SINC(I)   25518
INSTITUTO DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Unidad Ejecutora - UE
artículos
Título:
Dimensional Affect recognition from HRV: an approach based on supervised SOM and ELM (IF 6.288)
Autor/es:
MILONE, DIEGO HUMBERTO; BUGNON, LEANDRO ARIEL; CALVO, RAFAEL A.
Revista:
IEEE Transactions on Affective Computing
Editorial:
IEEE
Referencias:
Año: 2020 vol. 11 p. 32 - 44
ISSN:
1949-3045
Resumen:
Dimensional affect recognition is a challenging topic and current techniques do not yet provide the accuracy necessary for HCI applications. In this work we propose two new methods. The first is a novel self-organizing model that learns from similarity between features and affects. This method produces a graphical representation of the multidimensional data which may assist the expert analysis. The second method uses extreme learning machines, an emerging artificial neural network model. Aiming for minimum intrusiveness, we use only the heart rate variability, which can be recorded using a small set of sensors. The methods were validated with two datasets. The first is composed of 16 sessions with different participants and was used to evaluate the models in a classification task. The second one was the publicly available Remote Collaborative and Affective Interaction (RECOLA) dataset, which was used for dimensional affect estimation. The performance evaluation used the kappa score, unweighted average recall and the concordance correlation coefficient. The concordance coefficient on the RECOLA test partition was 0.421 in arousal and 0.321 in valence. Results shows that our models outperform state-of-the-art models on the same data and provides new ways to analyze affective states.