ICC   25427
INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Unidad Ejecutora - UE
artículos
Título:
Arabic medical entities tagging using distant learning in a Multilingual Framework
Autor/es:
JORGE VIVALDI; VIVIANA COTIK; HORACIO RODRÍGUEZ
Revista:
Journal of King Saud University - Science
Editorial:
Elsevier
Referencias:
Año: 2017 vol. 29 p. 204 - 211
ISSN:
1018-3647
Resumen:
A semantic tagger aiming to detect relevant entities in Arabic medical documents and tagging them with their appropriate semantic class is presented. The system takes profit of a Multilingual Framework covering four languages (Arabic, English, French, and Spanish), in a way that resources available for each language can be used to improve the results of the others, this is specially important for less resourced languages as Arabic. The approach has been evaluated against Wikipedia pages of the four languages belonging to the medical domain. The core of the system is the definition of a base tagset consisting of the three most represented classes in SNOMED-CT taxonomy and the learning of a binary classifier for each semantic category in the tagset and each language, using a distant learning approach over three widely used knowledge resources, namely Wikipedia, Dbpedia, and SNOMED-CT.