IFIBIO HOUSSAY   25014
INSTITUTO DE FISIOLOGIA Y BIOFISICA BERNARDO HOUSSAY
Unidad Ejecutora - UE
artículos
Título:
Na+/H+ exchanger isoform 1 activity in AQP2-expressing cells can be either proliferative or anti-proliferative depending on extracellular pH
Autor/es:
GISELA DI GIUSTO; NATALIA BELTRAMONE; VALERIA RIVAROLA; MICAELA PORTA; PAULA FORD; MARINA MAZZOCCHI; ALEJANDRO PIZZONI; CLAUDIA CAPURRO
Revista:
JOURNAL OF PHYSIOLOGY AND BIOCHEMISTRY
Editorial:
SERVICIO PUBLICACIONES UNIVERSIDAD NAVARRA
Referencias:
Año: 2020 vol. 76 p. 37 - 48
ISSN:
1138-7548
Resumen:
We have previously shown in renal cells that expression of the water channel Aquaporin-2 increases cell proliferation by a regulatory volume mechanism involving Na+/H+ exchanger isoform 2. Here, we investigated if Aquaporin-2 (AQP2) also modulates Na+/H+ exchanger isoform 1-dependent cell proliferation. We use two AQP2-expressing cortical collecting duct models: one constitutive (WT or AQP2-transfected RCCD1 cell line) and one inducible (control or vasopressin-induced mpkCCDc14 cell line). We found that Aquaporin-2 modifies Na+/H+ exchanger isoform 1 (NHE1) contribution to cell proliferation. In Aquaporin-2-expressing cells, Na+/H+ exchanger isoform 1 is anti-proliferative at physiological pH. In acid media, Na+/H+ exchanger isoform 1 contribution turned from anti-proliferative to proliferative only in AQP2-expressing cells. We also found that, in AQP2-expressing cells, NHE1-dependent proliferation changes parallel changes in stress fibers levels: at pH 7.4 Na+/H+ exchanger isoform 1 would favor stress fiber disassembly and, under acidosis, NHE1 would favor stress fiber assembly. Moreover, we found that Na+/H+ exchanger-dependent effects on proliferation linked to Aquaporin-2 relied on Transient Receptor Potential Subfamily V calcium channels activity. In conclusion, our data show that, in collecting duct cells, the water channel Aquaporin-2 modulates NHE1-dependent cell proliferation. In AQP2-expressing cells, at physiological pH, the Na+/H+ exchanger isoform 1 function is anti-proliferative and, at acidic pH, Na+/H+ exchanger isoform 1 function is proliferative. We propose that Na+/H+ exchanger isoform 1 modulates proliferation through an interplay with stress fibers formation.