IBS   24490
INSTITUTO DE BIOLOGIA SUBTROPICAL
Unidad Ejecutora - UE
artículos
Título:
Carbon stock densities of semi-deciduous Atlantic forest and pine plantations in Argentina
Autor/es:
ZANINOVICH, SILVIA CLARISA; GATTI, M. GENOVEVA
Revista:
THE SCIENCE OF TOTAL ENVIRONMENT
Editorial:
Elsevier B.V.
Referencias:
Año: 2020 vol. 747
ISSN:
0048-9697
Resumen:
Recent studies have shown the importance of subtropical forests as terrestrial carbon sinks and also their vulnerability to human disturbances and climate change. The Semi-deciduous Atlantic Forest presents large extensions replaced by productive uses, such as tree plantations, and forest remnants showing high levels of structural heterogeneity. No studies have performed carbon stock densities estimations in different pools in the region. We wonder how changes in forest structure and forest replacement by pine plantations affect ecosystem carbon stock densities in different pools and fluxes. We performed carbon estimates based on field data and compared closed (CF) and open (OF) canopy natural forest patches and Pinus taeda plantations at harvest age (PP). Structural changes in the natural forest had a profound effect on the ecosystem by halving the forest carbon stock while pulp-intended pine plantations reached the carbon stock of closed forest at harvest age. Main changes from CF to OF were a 55% decrease in the carbon of biomass and a 42% decrease in SOC. Instead, carbon stock density in biomass of PP was similar to CF but the carbon in fallen deadwood was 78% lower while in the litter layer was double; the SOC at 0?5 cm depth was 31% lower in PP than CF. Our study shows that structural changes in the natural forest halve the forest carbon stock while pulp-intended pine plantations can reach the closed forest carbon stock at harvest age. However, PP do not seem to be effective for carbon storage in the long term because of regular harvesting and clearing and their short-life products. Therefore, to effectively store the forest carbon, arresting deforestation, replacement and degradation of the original forest is crucial.