CIFICEN   24414
CENTRO DE INVESTIGACIONES EN FISICA E INGENIERIA DEL CENTRO DE LA PROVINCIA DE BUENOS AIRES
Unidad Ejecutora - UE
artículos
Título:
Performance of ZnSe(Te) as fiberoptic dosimetry detector
Autor/es:
M RAMIREZ; P MOLINA; N MARTINEZ; J MARCAZZÓ; D FELD; M SANTIAGO
Revista:
APPLIED RADIATION AND ISOTOPES
Editorial:
PERGAMON-ELSEVIER SCIENCE LTD
Referencias:
Lugar: Amsterdam; Año: 2016 vol. 116 p. 1 - 7
ISSN:
0969-8043
Resumen:
Fiber optic dosimetry (FOD) is an experimental technique suitable for in-vivo, real time dosimetry in radiotherapy treatments. FOD relies on using a small scintillator coupled to one end of a long optical fiber. The scintillator is placed at the point where the dose rate is to be determined whereas a light detector at the other end of the fiber measures the intensity of the radioluminescence emitted by the scintillator. One of the problems hampering the straight forward application of this technique in clinics is the presence of Cherenkov radiation generated in the fiber by the ionizing radiation, which adds to the scintillating light and introduces a bias in the dose measurement. Since Cherenkov radiation is more important in short wavelength range of the visible spectrum, using red-emitting scintillators as FOD detectors permits to reduce the Cherenkov contribution by using optical filters. In this work, the performance of red-emitting tellurium-doped zinc selenide crystal as FOD detector is evaluated and compared to the response of an ion-chamber.