INBIOTEC   24408
INSTITUTO DE INVESTIGACIONES EN BIODIVERSIDAD Y BIOTECNOLOGIA
Unidad Ejecutora - UE
artículos
Título:
A semi-closed loop microalgal biomass production-platform for ethanol from renewable sources of nitrogen and phosphorous
Autor/es:
SANZ SMACHETTI, MARIA E.; SANCHEZ RIZZA, LARA; DO NASCIMENTO, MAURO; CORONEL, CAMILA D.; CURATTI, LEONARDO
Revista:
JOURNAL OF CLEANER PRODUCTION
Editorial:
ELSEVIER SCI LTD
Referencias:
Año: 2019 vol. 219 p. 217 - 224
ISSN:
0959-6526
Resumen:
Production of microalgal biomass for feed and fuels demands unsustainable large amounts of fertilizers. The most broadly considered alternative sources of nutrients/fertilizer for microalgae are wastewater and internal recycling in closed-loop production platforms. However, these strategies largely disable co-production of feed and fuel in biomass biorefineries for an increased economic and environmental feasibility. In this study, we aimed at providing proof-of-concept for a semi-closed loop microalgal production-platform and biomass biorefinery for ethanol and feed from renewable resources of N and P. Atmospheric N 2 was assimilated into a N 2 -fixing cyanobacterial biomass, which sustained growth of a microalga that accumulated high levels of carbohydrates (up to 60% (w/w)) as a sole source of fertilizer. The microalgal biomass was efficiently saccharified with H 2 SO 4 , which was recycled to release soluble PO 4 3- from bone meal as a renewable source of P. Fermenting these P-enriched preparations with yeasts quantitatively produced ethanol at theoretical yields, a concentration of up to 50 g ethanol. L −1 and a yield of 0.25 g ethanol. g biomass −1 . Calculations suggested a potential yield from 7600 to 10,800 L ethanol. ha −1 . year −1 , under Buenos Aires environmental conditions, which would be higher than that currently obtained from maize feedstocks. The residual fermentation vinasse, supplemented with P and containing other downstream-process reagents, was recycled as a sole source of macronutrients for the cultivation of the N 2 -fixing cyanobacterium to close the production cycle. Water recycling and co-production of residual biomass enriched in fat and protein as potential feed are also shown. This semi-closed loop biomass production-platform reconciles the concepts of microalgal biomass biorefineries for the co-production of feedstocks for biofuels and feed and nutrients recycling in closed-loop systems that largely minimizes production of waste.