INBIOTEC   24408
INSTITUTO DE INVESTIGACIONES EN BIODIVERSIDAD Y BIOTECNOLOGIA
Unidad Ejecutora - UE
artículos
Título:
Plant-Adapted Escherichia coli Show Increased Lettuce Colonizing Ability, Resistance to Oxidative Stress and Chemotactic Response
Autor/es:
DUBLAN M DE LOS A; ORTIZ MÁRQUEZ JC; LETT L; CURATTI L
Revista:
PLOS ONE
Editorial:
PUBLIC LIBRARY SCIENCE
Referencias:
Lugar: San Francisco; Año: 2014 vol. 9 p. 1 - 7
ISSN:
1932-6203
Resumen:
Background: Escherichia coli is a widespread gut commensal and often a versatile pathogen of public health concern. E. coli are also frequently found in different environments and/or alternative secondary hosts, such as plant tissues. The lifestyle of E. coli in plants is poorly understood and has potential implications for food safety. Methods/Principal Findings: This work shows that a human commensal strain of E. coli K12 readily colonizes lettuce seedlings and produces large microcolony-like cell aggregates in leaves, especially in young leaves, in proximity to the vascular tissue. Our observations strongly suggest that those cell aggregates arise from multiplication of single bacterial cells that reach those spots. We showed that E. coli isolated from colonized leaves progressively colonize lettuce seedlings to higher titers, suggesting a fast adaptation process. E. coli cells isolated from leaves presented a dramatic rise in tolerance to oxidative stress and became more chemotactic responsive towards lettuce leaf extracts. Mutant strains impaired in their chemotactic response were less efficient lettuce colonizers than the chemotactic isogenic strain. However, acclimation to oxidative stress and/or minimal medium alone failed to prime E. coli cells for enhanced lettuce colonization efficiency. Conclusion/Significance: These findings help to understand the physiological adaptation during the alternative lifestyle of E. coli in/on plant tissues.