UNIDEF   23986
UNIDAD DE INVESTIGACION Y DESARROLLO ESTRATEGICO PARA LA DEFENSA
Unidad Ejecutora - UE
artículos
Título:
In-situ Ni exsolution from NiTiO3 as potential anode for solid oxide fuel cells
Autor/es:
GIANGIORDANO, FLORENCIA VOLPE; LARRONDO, SUSANA A.; NICHIO, NORA; TOSCANI, LUCÍA M.; POMPEO, FRANCISCO
Revista:
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Editorial:
PERGAMON-ELSEVIER SCIENCE LTD
Referencias:
Año: 2020 vol. 45 p. 23433 - 23443
ISSN:
0360-3199
Resumen:
Sample NiTiO3 (NTO) is prepared by the molten salts synthesis route as a potential anode material for solid oxide fuel cell (SOFC) applications. An additional sample impregnated with 5 mol%Ni (N-NTO) is also presented. Structural characterization reveal a pure NiTiO3 phase upon calcination at 850 °C and 1000 °C. Redox characterization by temperature programmed reduction tests indicate the transition from NiTiO3 to Ni/TiO2 at ca. 700 °C. Ni nanoparticles (ca. 26 nm) are exsolved in-situ from the structure after a reducing treatment at 850 °C. Catalytic activity tests for partial oxidation of methane performed in a fixed bed reactor reveal excellent values of activity and selectivity due to the highly dispersed Ni nanoparticles in the support surface. Time-on-stream behavior during 100 h operation in reaction conditions for sample N-NTO yield a stable CH4 conversion. Electrolyte supported symmetrical cells are prepared with both materials achieving excellent polarization resistance of 0.023 Ω cm2 in 7%H2/N2 atmosphere at 750 °C with sample N-NTO. The maximum power density achieved is of 273 mW cm−2 at 800 °C with a commercial Pt ink used as a reference cathode, indicating further improvement of the system can be achieved and positioning the N-NTO material as a promising SOFC anode material.