IQUIBICEN   23947
INSTITUTO DE QUIMICA BIOLOGICA DE LA FACULTAD DE CIENCIAS EXACTAS Y NATURALES
Unidad Ejecutora - UE
artículos
Título:
Transcriptional regulation of the protein kinase A subunits in Saccharomyces cerevisiae: Autoregulatory role of the kinase A activity
Autor/es:
PAUTASSO, CONSTANZA; ROSSI, SILVIA
Revista:
BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS
Editorial:
ELSEVIER SCIENCE BV
Referencias:
Lugar: Amsterdam; Año: 2014 vol. 1839 p. 275 - 287
ISSN:
1874-9399
Resumen:
Protein kinase A (PKA) is a broad specificity protein kinase that controls a physiological response following the increment of cAMP as a consequence of a particular stimulus. The specificity of cAMP-signal transduction is maintained by several levels of control acting all together. Herein we present the study of the regulation of the expression of each PKA subunit, analyzing the activity of their promoters. The promoter of each isoform of TPK and of BCY1 is differentially activated during the growth phase. A negative mechanism of isoform-dependent autoregulation directs TPKs and BCY1 gene expressions. TPK1 promoter activity is positively regulated during heat shock and saline stress. The kinase Rim15, but not the kinase Yak1, positively regulates TPK1 promoter. Msn2/4, Gis1, and Sok2 are transcription factors involved in the regulation of TPK1 expression during stress. TPK2, TPK3, and BCY1 promoters, unlike TPK1, are not activated under stress conditions, although all the promoters are activated under low or null protein kinase A activity. These results indicate that subunits share an inhibitory autoregulatory mechanism but have different mechanisms involved in response to heat shock or saline stress.