IQUIBICEN   23947
INSTITUTO DE QUIMICA BIOLOGICA DE LA FACULTAD DE CIENCIAS EXACTAS Y NATURALES
Unidad Ejecutora - UE
artículos
Título:
Escherichia coli redox mutants as microbial cell factories for the synthesis of reduced biochemicals
Autor/es:
RUIZ, JIMENA ALICIA; GODOY MANUEL S; MEZZINA MARIELA; BIDART GONZALO; MÉNDEZ, BEATRIZ SILVIA; PETTINARI, MARÍA JULIA; NIKEL, PABLO IVÁN
Revista:
Computational and Structural Biotechnology Journal
Editorial:
International Chemical Biology Society
Referencias:
Año: 2012 vol. 3 p. 1 - 10
ISSN:
2001-0370
Resumen:
Bioprocesses conducted under conditions with restricted O2 supply are increasingly exploited for the synthesis of reduced biochemicals using different biocatalysts. The model facultative aerobe Escherichia coli, the microbial cell factory par excellence, has elaborate sensing and signal transduction mechanisms that respond to the availability of electron acceptors and alternative carbon sources in the surrounding environment. In particular, the ArcBA and CreBC two-component signal transduction systems are largely responsible for the metabolic regulation of redox control in response to O2 availability, and carbon source utilization, respectively. Significant advances in the understanding of the biochemical, genetic, and physiological duties of these regulatory systems have been achieved in recent years. This situation allowed to rationally-design novel engineering approaches that ensure optimal carbon and energy flows within central metabolism, as well as to manipulate redox homeostasis, in order to optimize the production of industrially-relevant metabolites. In particular, metabolic flux analysis provided new clues to understand the metabolic regulation mediated by the ArcBA and CreBC systems. Genetic manipulation of these regulators proved useful for designing microbial cells factories tailored for the synthesis of reduced biochemicals with added value, such as poly(3-hydroxybutyrate), under conditions with restricted O2 supply. This network-wide strategy is in contrast with traditional metabolic engineering approaches, that entail direct modification of the pathways at stake, and opens new avenues for the targeted modulation of central catabolic pathways at the transcriptional level.