INICSA   23916
INSTITUTO DE INVESTIGACIONES EN CIENCIAS DE LA SALUD
Unidad Ejecutora - UE
artículos
Título:
Bootstrap hypothesis testing in generalized additive models for comparing curves of treatments in longitudinal studies
Autor/es:
NORES, MAR√ćA LAURA; DIAZ MP
Revista:
JOURNAL OF APPLIED STATISTICS
Editorial:
ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
Referencias:
Lugar: NY; Año: 2015 vol. 41 p. 918 - 918
ISSN:
0266-4763
Resumen:
The study of the effect of a treatment may involve the evaluation of a variable at a number of moments. When assuming a smooth curve for the mean response along time, estimation can be afforded by spline regression, in the context of generalized additive models. The novelty of our work lies in the construction of hypothesis tests to compare two curves of treatments in any interval of time for several types of response variables. The within-subject correlation is not modeled but is considered to obtain valid inferences by the use of bootstrap. We propose both semiparametric and nonparametric bootstrap approaches, based on resampling vectors of residuals or responses, respectively. Simulation studies revealed a good performance of the tests, considering, for the outcome, different distribution functions in the exponential family and varying the correlation between observations along time. We show that the sizes of bootstrap tests are close to the nominal value, with tests based on a standardized statistic having slightly better size properties. The power increases as the distance between curves increases and decreases when correlation gets higher. The usefulness of these statistical tools was confirmed using real data, thus allowing to detect changes in fish behavior when exposed to the toxin microcystin-RR.
rds']