INICSA   23916
INSTITUTO DE INVESTIGACIONES EN CIENCIAS DE LA SALUD
Unidad Ejecutora - UE
artículos
Título:
Anandamide inhibits transport-related oxygen consumption in the loop of Henle by activating CB1 receptors
Autor/es:
SILVA, GB; ATCHISON, DK; JUNCOS, LI; GARCIA, NH
Revista:
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY
Editorial:
AMER PHYSIOLOGICAL SOC
Referencias:
Lugar: Bethesda; Año: 2013 p. 376 - 376
ISSN:
1931-857X
Resumen:
The energy required for active Na chloride reabsorption in the thick ascending limb (TAL) depends on oxygen consumption and oxidative phosphorylation (OXP). In other cells, Na transport is inhibited by the endogenous cannabinoid anandamide through the activation of the cannabinoid receptors (CB) type 1 and 2. However, it is unclear whether anandamide alters TAL transport and the mechanisms that could be involved. We hypothesized that anandamide inhibits TAL transport via activation of CB1 receptors and NO. For this, we measured oxygen consumption (Q(O(2))) in TAL suspensions to monitor the anandamide effects on transport and OXP. Anandamide reduced Q(O(2)) in a concentration-dependent manner. During Na-K-2Cl cotransport and Na/H exchange inhibition, anandamide did not inhibit TAL Q(O(2)). To test the role of the cannabinoid receptors, we used specific agonists and antagonists of CB1 and CB2 receptors. The CB1-selective agonist WIN55212-2 reduced Q(O(2)) in a concentration-dependent manner. Also, the CB1 receptor antagonist rimonabant blocked the effect of anandamide on Q(O(2)). In contrast, the CB2-selective agonist JHW-133 had no effect on Q(O(2)), while the CB2 receptor antagonist AM-630 failed to block the anandamide effects on Q(O(2)). To confirm these results, we measured CB1 and CB2 receptor expression and only CB1 expression was detected. Because CB1 receptors are strong nitric oxide synthase (NOS) stimulators and NO inhibits transport in TALs, we evaluated the role of NO. Anandamide stimulated NO production and the NOS inhibitor N(G)-nitro-L-arginine methyl ester blocked the anandamide effects on Q(O(2)). We conclude that anandamide inhibits TAL Na transport-related Q(O(2)) via activation of CB1 receptor and NOS.
rds']