IFISUR   23398
INSTITUTO DE FISICA DEL SUR
Unidad Ejecutora - UE
artículos
Título:
Conserved charged amino acids are key determinants for fatty acid binding proteins (FABPs)-membrane interactions. A multi-methodological computational approach
Autor/es:
MARCELO DANIEL COSTABEL; MARÍA JULIA AMUNDARAIN; MARCELO DANIEL COSTABEL; BETINA CÓRSICO; MARÍA JULIA AMUNDARAIN; ALEJANDRO GIORGETTI; BETINA CÓRSICO; ALEJANDRO GIORGETTI; JUAN FRANCISCO VISO; FERNANDO ZAMARREÑO; JUAN FRANCISCO VISO; FERNANDO ZAMARREÑO
Revista:
JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS
Editorial:
ADENINE PRESS
Referencias:
Año: 2017 p. 1 - 17
ISSN:
0739-1102
Resumen:
Based on the analysis of the mechanism of ligand transfer to membranes employing in vitro methods, Fatty Acid Binding Protein (FABP) family has been divided in two subgroups: collisional and diffusional FABPs. Although the collisional mechanism has been well characterized employing in vitro methods, the structural features responsible for the difference between collisional and diffusional mechanisms remain uncertain. In this work, we have identified the amino acids putatively responsible for the interaction with membranes of both, collisional and diffusional, subgroups of FABPs. Moreover, we show how specific changes in FABPs? structure could change the mechanism of interaction with membranes. We have computed protein?membrane interaction energies for members of each subgroup of the family, and performed Molecular Dynamics simulations that have shown different configurations for the initial interaction between FABPs and membranes. In order to generalize our hypothesis, we extended the electrostatic and bioinformatics analysis over FABPs of different mammalian genus. Also, our methodological approach could be used for other systems involving protein?membrane interactions.