INVESTIGADORES
ARIAS Diego Gustavo
congresos y reuniones científicas
Título:
Functional characterization of methionine sulfoxide reductase B from Trypanosoma cruzi
Autor/es:
ARIAS, DIEGO G.; CABEZA, MATÍAS S.; ECHARREN, MA. LAURA; IGLESIAS, ALBERTO A.; GUERRERO, SERGIO A.
Lugar:
Montevideo
Reunión:
Simposio; Simposio sobre Biología Molecular de la Enfermedad de Chagas.; 2012
Institución organizadora:
Instituto Pasteur de Montevideo
Resumen:
Methionine is an amino
acid susceptible to being oxidized to methionine sulfoxide (MetSO). The
reduction of MetSO to methionine is catalyzed by methionine sulfoxide reductase
(MSR), an enzyme present in almost all organisms. In trypanosomatids, the study
of antioxidant systems has been mainly focused on the involvement of
trypanothione, a specific redox component in these organisms. However, poorly
information is available concerning their mechanisms for repairing oxidized proteins,
which would be relevant for the survival of these pathogens in the various
stages of their life cycle.
Recently, we characterized two A-type MSR proteins from T. cruzi and T. brucei. In this work, we report the molecular cloning of a
gene encoding a putative B‑type MSR in this pathogen. The gene was expressed in
Escherichia coli, and the
corresponding recombinant protein was purified and functionally characterized.
The enzyme was specific for L-Met(R)SO
reduction, using T. cruzi TXNI, TXNII
and TRX as the reducing substrates. In addition, we found that TcMSRB could compensate for MSR deficiency in yeast mutant strain lacking both MSRA and MSRB
genes. The protein presented redox-dependent change in
monomer/dimer oligomerization states. The results support the occurrence of a
metabolic pathway in T. cruzi involved in the critical function
of repairing oxidized macromolecules.