INVESTIGADORES
VATTA Marcelo Sergio
artículos
Título:
Atrial Natriuretic Factor Stimulates Efflux of cAMP in Rat Exocrine
Autor/es:
RODRIGUEZ M; DIEZ F; VENTIMIGLIA M; MORALES VP; COPSEL S; VATTA MS; DAVIO CA; BIANCIOTTI LG
Revista:
GASTROENTEROLOGY
Editorial:
W B SAUNDERS CO-ELSEVIER INC
Referencias:
Lugar: BETHESDA; Año: 2011 vol. 140 p. 1292 - 1302
ISSN:
0016-5085
Resumen:
BACKGROUND & AIMS: Atrial natriuretic factor (ANF) prevents increases in intracellular levels of cAMP that are induced by secretin in the exocrine pancreas. We investigated the contribution of cyclic adenosine monophosphate (cAMP) efflux to ANF inhibition of secretin signaling. METHODS: Intracellular and extracellular cAMP were measured by radio-binding assays in isolated pancreatic acini exposed to secretin and other secretagogues, alone or with ANF. Levels of messenger RNA for multidrug resistance–associated protein (MRP)4, MRP5, and MRP8 were measured by real-time polymerase chain reaction. MRP4 was knocked down in AR42J cells by small interfering RNA. In vivo studies were performed in rats. RESULTS: Pancreatic secretagogues increased levels of intracellular cAMP, but only secretin and vasoactive intestinal peptide promoted cAMP efflux; efflux was increased by ANF, through signaling via natriuretic peptide receptor-C and phospholipase C–protein kinase C. In time-course studies with active phosphodiesterases, levels of intracellular and extracellular cAMP increased earlier after the addition of secretin and ANF (1 min) than after the addition of secretin alone (3 min). Similar kinetic patterns occurred with a phosphodiesterase inhibitor. A probenecid-sensitive transporter mediated cAMP egression. The main cAMP transporter, MRP4, was expressed in AR42J cells and pancreas. cAMP egression occurred in AR42J cells exposed to secretin, but this response was reduced in cells that expressed MRP4 small interfering RNA. In rats, levels of cAMP in plasma and pancreatic juice increased after infusion with secretin alone or secretin plus ANF. CONCLUSIONS: ANF signals via natriuretic peptide receptor-C coupled to the phospholipase C–protein kinase C pathway to increase secretin-induced efflux of cAMP, probably through MPR-4. Cyclic AMP extrusion might be a mechanism, in addition to phosphodiesterase action, to regulate intracellular cAMP levels in pancreatic acinar cells.Atrial natriuretic factor (ANF) prevents increases in intracellular levels of cAMP that are induced by secretin in the exocrine pancreas. We investigated the contribution of cyclic adenosine monophosphate (cAMP) efflux to ANF inhibition of secretin signaling. METHODS: Intracellular and extracellular cAMP were measured by radio-binding assays in isolated pancreatic acini exposed to secretin and other secretagogues, alone or with ANF. Levels of messenger RNA for multidrug resistance–associated protein (MRP)4, MRP5, and MRP8 were measured by real-time polymerase chain reaction. MRP4 was knocked down in AR42J cells by small interfering RNA. In vivo studies were performed in rats. RESULTS: Pancreatic secretagogues increased levels of intracellular cAMP, but only secretin and vasoactive intestinal peptide promoted cAMP efflux; efflux was increased by ANF, through signaling via natriuretic peptide receptor-C and phospholipase C–protein kinase C. In time-course studies with active phosphodiesterases, levels of intracellular and extracellular cAMP increased earlier after the addition of secretin and ANF (1 min) than after the addition of secretin alone (3 min). Similar kinetic patterns occurred with a phosphodiesterase inhibitor. A probenecid-sensitive transporter mediated cAMP egression. The main cAMP transporter, MRP4, was expressed in AR42J cells and pancreas. cAMP egression occurred in AR42J cells exposed to secretin, but this response was reduced in cells that expressed MRP4 small interfering RNA. In rats, levels of cAMP in plasma and pancreatic juice increased after infusion with secretin alone or secretin plus ANF. CONCLUSIONS: ANF signals via natriuretic peptide receptor-C coupled to the phospholipase C–protein kinase C pathway to increase secretin-induced efflux of cAMP, probably through MPR-4. Cyclic AMP extrusion might be a mechanism, in addition to phosphodiesterase action, to regulate intracellular cAMP levels in pancreatic acinar cells.METHODS: Intracellular and extracellular cAMP were measured by radio-binding assays in isolated pancreatic acini exposed to secretin and other secretagogues, alone or with ANF. Levels of messenger RNA for multidrug resistance–associated protein (MRP)4, MRP5, and MRP8 were measured by real-time polymerase chain reaction. MRP4 was knocked down in AR42J cells by small interfering RNA. In vivo studies were performed in rats. RESULTS: Pancreatic secretagogues increased levels of intracellular cAMP, but only secretin and vasoactive intestinal peptide promoted cAMP efflux; efflux was increased by ANF, through signaling via natriuretic peptide receptor-C and phospholipase C–protein kinase C. In time-course studies with active phosphodiesterases, levels of intracellular and extracellular cAMP increased earlier after the addition of secretin and ANF (1 min) than after the addition of secretin alone (3 min). Similar kinetic patterns occurred with a phosphodiesterase inhibitor. A probenecid-sensitive transporter mediated cAMP egression. The main cAMP transporter, MRP4, was expressed in AR42J cells and pancreas. cAMP egression occurred in AR42J cells exposed to secretin, but this response was reduced in cells that expressed MRP4 small interfering RNA. In rats, levels of cAMP in plasma and pancreatic juice increased after infusion with secretin alone or secretin plus ANF. CONCLUSIONS: ANF signals via natriuretic peptide receptor-C coupled to the phospholipase C–protein kinase C pathway to increase secretin-induced efflux of cAMP, probably through MPR-4. Cyclic AMP extrusion might be a mechanism, in addition to phosphodiesterase action, to regulate intracellular cAMP levels in pancreatic acinar cells.RESULTS: Pancreatic secretagogues increased levels of intracellular cAMP, but only secretin and vasoactive intestinal peptide promoted cAMP efflux; efflux was increased by ANF, through signaling via natriuretic peptide receptor-C and phospholipase C–protein kinase C. In time-course studies with active phosphodiesterases, levels of intracellular and extracellular cAMP increased earlier after the addition of secretin and ANF (1 min) than after the addition of secretin alone (3 min). Similar kinetic patterns occurred with a phosphodiesterase inhibitor. A probenecid-sensitive transporter mediated cAMP egression. The main cAMP transporter, MRP4, was expressed in AR42J cells and pancreas. cAMP egression occurred in AR42J cells exposed to secretin, but this response was reduced in cells that expressed MRP4 small interfering RNA. In rats, levels of cAMP in plasma and pancreatic juice increased after infusion with secretin alone or secretin plus ANF. CONCLUSIONS: ANF signals via natriuretic peptide receptor-C coupled to the phospholipase C–protein kinase C pathway to increase secretin-induced efflux of cAMP, probably through MPR-4. Cyclic AMP extrusion might be a mechanism, in addition to phosphodiesterase action, to regulate intracellular cAMP levels in pancreatic acinar cells.CONCLUSIONS: ANF signals via natriuretic peptide receptor-C coupled to the phospholipase C–protein kinase C pathway to increase secretin-induced efflux of cAMP, probably through MPR-4. Cyclic AMP extrusion might be a mechanism, in addition to phosphodiesterase action, to regulate intracellular cAMP levels in pancreatic acinar cells.