INVESTIGADORES
ROSSO Osvaldo Anibal
artículos
Título:
Wavelet entropy analysis of event-related potentials indicates modality-independent theta dominance
Autor/es:
J. YORDANOVA; V. KOLEV; O. A. ROSSO; M. SCHURMANN; O. W. SAKOWITZ; M. OZGOREN; E. BASAR
Revista:
JOURNAL OF NEUROSCIENCE METHODS
Editorial:
Elsevier Science
Referencias:
Año: 2002 vol. 117 p. 99 - 109
ISSN:
0165-0270
Resumen:
Sensory/cognitive stimulation elicits multiple electroencephalogram (EEG)-oscillations that may be partly or fully overlapping over the time axis. To evaluate co-existent multi-frequency oscillations, EEG responses to unimodal (auditory or visual) and bimodal (combined auditory and visual) stimuli were analyzed by applying a new method called wavelet entropy (WE). The method is based on the wavelet transform (WT) and quantifies entropy of short segments of the event-related brain potentials (ERPs). For each modality, a significant transient decrease of WE emerged in the post-stimulus EEG epoch indicating a highly-ordered state in the ERP. WE minimum was always determined by a prominent dominance of theta (4/8 Hz) ERP components over other frequency bands. Event-related ‘transition to order’ was most pronounced and stable at anterior electrodes, and after bimodal stimulation. Being consistently observed across different modalities, a transient theta-dominated state may reflect a processing stage that is obligatory for stimulus evaluation, during which interfering activations from other frequency networks are minimized.ve stimulation elicits multiple electroencephalogram (EEG)-oscillations that may be partly or fully overlapping over the time axis. To evaluate co-existent multi-frequency oscillations, EEG responses to unimodal (auditory or visual) and bimodal (combined auditory and visual) stimuli were analyzed by applying a new method called wavelet entropy (WE). The method is based on the wavelet transform (WT) and quantifies entropy of short segments of the event-related brain potentials (ERPs). For each modality, a significant transient decrease of WE emerged in the post-stimulus EEG epoch indicating a highly-ordered state in the ERP. WE minimum was always determined by a prominent dominance of theta (4/8 Hz) ERP components over other frequency bands. Event-related ‘transition to order’ was most pronounced and stable at anterior electrodes, and after bimodal stimulation. Being consistently observed across different modalities, a transient theta-dominated state may reflect a processing stage that is obligatory for stimulus evaluation, during which interfering activations from other frequency networks are minimized.