INVESTIGADORES
ECHENIQUE Carmen Viviana
artículos
Título:
Water relations and leaf growth rate of three Agropyron genotypes under water stress
Autor/es:
GARCIA M G; BUSSO CS; POLCI P; GARCIA GIROU N L; ECHENIQUE V
Revista:
BIOCELL
Editorial:
INST HISTOL EMBRIOL-CONICET
Referencias:
Lugar: Mendoza; Año: 2002 vol. 26 p. 309 - 317
ISSN:
0327-9545
Resumen:
The effects of water stress on leaf water relations and growth are reported for three perennial tussock grass genotypes under glasshouse conditions. Studies were performed in genotypes El Palmar INTA and Selección Anguil of Agropyron scabrifolium (Döell) Parodi, and El Vizcachero of A. elongatum (Host) Beauv. Agropyron scabrifolium El Palmar INTA is native to a region with warm-temperate and humid climate without a dry season, and an average annual precipitation of 900 mm. Agropyron scabrifolium Selección Anguil comes from a region with a sub-humid, dry to semiarid climate and a mean annual precipitation of 600 mm. Agropyron elongatum is a widespread forage in semiarid Argentina with well-known water stress resistance. A mild water stress treatment was imposed slowly; plants reached a minimum pre-dawn leaf water potential of about -1.83 MPa by day 21 after watering was withheld. In all genotypes, water stress led to a reduction of leaf growth. There was a tendency for a greater epicuticular wax accumulation on water-stressed plants of A. scabrifolium Selección Anguil and A. elongatum than on those of A. scabrifolium El Palmar INTA. This may have contributed to obtain greater turgor pressures and relative water contents in the first two than in the later genotype. In turn, this may have contributed to determine smaller leaf growth rate reductions in A. scabrifolium Selección Anguil and A. elongatum than in A. scabrifolium El Palmar INTA under water stress. This study demonstrated variation in water stress resistance between genotypes in A. scabrifolium, and between A. scabrifolium Selección Anguil and A. elongatum versus A. scabrifolium El Palmar INTA, which was related to their differential responses in water relations.