IBBM   21076
INSTITUTO DE BIOTECNOLOGIA Y BIOLOGIA MOLECULAR
Unidad Ejecutora - UE
artículos
Título:
Protein composition of the occlusion bodies of Epinotia aporema granulovirus
Autor/es:
FABRE, MARÍA LAURA; ROMANOWSKI, VÍCTOR; FERRELLI, MARÍA LETICIA; MASSON, TOMÁS; PIDRE, MATÍAS LUIS
Revista:
PLOS ONE
Editorial:
PUBLIC LIBRARY SCIENCE
Referencias:
Año: 2019 vol. 14
ISSN:
1932-6203
Resumen:
Within family Baculoviridae, members of the Betabaculovirus genus are employed as bio-control agents against lepidopteran pests, either alone or in combination with selected members of the Alphabaculovirus genus. Epinotia aporema granulovirus (EpapGV) is a fast killing betabaculovirus that infects the bean shoot borer (E. aporema) and is a promising bio-pesticide. Because occlusion bodies (OBs) play a key role in baculovirus horizontal transmission, we investigated the composition of EpapGV OBs. Using mass spectrometry-based proteomics we could identify 56 proteins that are included in the OBs during the final stages of larval infection. Our data provides experimental validation of several annotated hypothetical coding sequences. Proteogenomic mapping against genomic sequence detected a previously unannotated ac110-like core gene and a putative translation fusion product of ORFs epap48 and epap49. Comparative studies of the proteomes available for the family Baculoviridae highlight the conservation of core gene products as parts of the occluded virion. Two proteins specific for betabaculoviruses (Epap48 and Epap95) are incorporated into OBs. Moreover, quantification based on emPAI values showed that Epap95 is one of the most abundant components of EpapGV OBs.