INTEQUI   20941
INSTITUTO DE INVESTIGACIONES EN TECNOLOGIA QUIMICA
Unidad Ejecutora - UE
congresos y reuniones científicas
Título:
Focusing on the structure-property relationships in lanthanide-organic frameworks
Autor/es:
G. E. GOMEZ; M. C. BERNINI; E. V. BRUSAU; G. E. NARDA
Lugar:
San Pablo
Reunión:
Otro; 22º Reunión de la Asociación Brasilera de Cristalografía y 1º Reunión de la Asociación Latinoamericana de Cristalografía; 2015
Institución organizadora:
Asociación Brasilera de Cristalografía y Asociación Latinoamericana de Cristalografía
Resumen:
Ln-MOFs (Lanthanide Metal ? Organic Frameworks) offer a unique platform and methodology for the development of materials with potential applications in several fields and particularly, their luminescent [1] and catalytic [2] properties have received increasing attention. Selecting the appropriate building blocks and experimental conditions is possible to obtain architectures with diverse dimensionalities accompanied with specific and attracting properties [3]. Two sets of 3D compounds based on 2,3-dimethylsuccinate anion and lanthanides with formula [Ln2(C6H8O4)3(H2O)2] (with Ln= Pr, Nd, Sm, Eu) and [Ln2(C6H8O4)3] (with Ln= Tb, Dy, Ho, Er and Yb) [4a] were synthesized and fully characterized. Moreover, to explore the influence of the substituent of the succinate ligand on the structure and properties, phenylsuccinic acid was employed as linker, giving rise to a new type of 2D Ln-MOFs with formula [Ln2(C10H8O4)3(H2O)] (with Ln= Pr, Nd, Sm, Gd, Eu, Tb, Eu/Gd, Eu/Tb) [4b]. Focusing on the optical properties of these materials, the emission peaks correspond to 4f-4f transitions in most cases. Here we present the strong relationship between the energy levels of the building blocks involved in the radiative and non-radiative processes along with their structural features found in these compounds. Besides, the series exhibit an excellent catalytic activity when it analyzed in the context of other alquil-substituted succinates Ln-MOFs toward the widely studied reaction of cyanosilylation of benzaldehyde [5]. [1] M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. Houk. Chem. Soc. Rev. 2009, 38, 1330-1352. [2] A. U. Czaja, N. Trukhanb, U. Müller. Chem. Soc. Rev. 2009, 38, 1284-1293.[3] C. Janiak. Dalton Trans. 2003, 2781-2804.[4] (a) G. E. Gomez, M. C. Bernini, E. V. Brusau, G. E. Narda, W. A. Massad, A. Labrador. Cryst. Growth Des. 2013, 13, 5249-5260. (b) G. E. Gomez, M. C. Bernini, E. V. Brusau, G. E. Narda, D. Vega, A. M. Kaczmarek, R. Van Deun, M. Nazzarro. Dalton Trans. 2015, 44, 3417-3429.[5] R. F. D?Vries, N. Snejko, M. Iglesias, E. Gutiérrez-Puebla, M. A. Monge. Cryst. Growth Des. 2014, 14, 2516-2521.