IMIBIO-SL   20937
INSTITUTO MULTIDISCIPLINARIO DE INVESTIGACIONES BIOLOGICAS DE SAN LUIS
Unidad Ejecutora - UE
artículos
Título:
Lipid metabolism in liver of rat exposed to cadmium
Autor/es:
ETHEL V. LARREGLE A, SILVIA M. VARAS A, LILIANA B. OLIVEROS LUIS D. MARTINEZ , ROSA ANTON ,GIMENEZ M.S:
Revista:
FOOD CHEM TOXICOL
Editorial:
Elsevier
Referencias:
Lugar: Netherlands; Año: 2008 vol. 46 p. 1786 - 1792
ISSN:
0278 6915
Resumen:
Abstract We investigated the effect of exposition to cadmium (Cd, 15 ppm for 8 weeks) through drinking water on liver lipid metabolism in adult male Wistar rats. As compared to metal non-exposed (control) rats, the serum triglycerides, cholesterol and LDL + VLDL cholesterol concentrations increased. This was associated to a decrease of lipoprotein lipase activity in post heparinic plasma. The VLDL secretion from liver was not modified. Cd treatment increased triglycerides and decreased esterified cholesterol contents in liver. The high triglyceride mass was related to the increased glycerol-3-phosphate acyltransferase mRNA expression. In addition, the liver fatty acids synthesis increased, as determined by an increment of fatty acid synthetase and isocitrate dehydrogenase activities, and [14C]-acetate incorporation into saponifiable lipid fraction. The relative percentage of palmitic acid (16:0) and total saturated fatty acids were increased compared with control. Hepatic glucose-6-phosphate dehydrogenase, malic dehydrogenase and cholesteryl ester hydrolase activities were unchanged. In liver, the Cd treatment decreased triglyceride and cholesterol in mitochondria, also increased triglyceride in cytosol, and cholesterol and phospholipid contents in nuclei, compared with control. In addition, an increase of nuclei phosphatidylcholine synthesis was observed. Cd exposure alters directly or indirectly the serum lipid content and liver lipid metabolism. incorporation into saponifiable lipid fraction. The relative percentage of palmitic acid (16:0) and total saturated fatty acids were increased compared with control. Hepatic glucose-6-phosphate dehydrogenase, malic dehydrogenase and cholesteryl ester hydrolase activities were unchanged. In liver, the Cd treatment decreased triglyceride and cholesterol in mitochondria, also increased triglyceride in cytosol, and cholesterol and phospholipid contents in nuclei, compared with control. In addition, an increase of nuclei phosphatidylcholine synthesis was observed. Cd exposure alters directly or indirectly the serum lipid content and liver lipid metabolism. 14C]-acetate incorporation into saponifiable lipid fraction. The relative percentage of palmitic acid (16:0) and total saturated fatty acids were increased compared with control. Hepatic glucose-6-phosphate dehydrogenase, malic dehydrogenase and cholesteryl ester hydrolase activities were unchanged. In liver, the Cd treatment decreased triglyceride and cholesterol in mitochondria, also increased triglyceride in cytosol, and cholesterol and phospholipid contents in nuclei, compared with control. In addition, an increase of nuclei phosphatidylcholine synthesis was observed. Cd exposure alters directly or indirectly the serum lipid content and liver lipid metabolism. 2008 Elsevier Ltd. All rights reserved.2008 Elsevier Ltd. All rights reserved. Keywords: Cadmium; Liver; Subcellular particles; Triglycerides; Phospholipids; CholesterolCadmium; Liver; Subcellular particles; Triglycerides; Phospholipids; Cholesterol