IFIMAR   20926
INSTITUTO DE INVESTIGACIONES FISICAS DE MAR DEL PLATA
Unidad Ejecutora - UE
artículos
Título:
Log-periodic modulation in one-dimensional random walks
Autor/es:
L. PADILLA J. L. IGUAIN; H. O. MÁRTIN; J. L. IGUAIN
Revista:
European Physics Letter
Referencias:
Año: 2008
Resumen:
(TRABAJO ENVIADO: 9/10/2008; ACEPTADO: 22/12/2008; PUBLICADO: 30/1/2009). We have studied the diffusion of a single particle on a one-dimensional lattice. It is shown that, for a self-similar distribution of hopping rates, the time dependence of the mean-square displacement follows an anomalous power law modulated by logarithmic periodic oscillations. The origin of this modulation is due to the dependence of the diffusion coefficient on the length scale. Both the random walk exponent and the period of the modulation are analytically calculated and confirmed by Monte Carlo simulations.
rds']