IANIGLA   20881
INSTITUTO ARGENTINO DE NIVOLOGIA, GLACIOLOGIA Y CIENCIAS AMBIENTALES
Unidad Ejecutora - UE
artículos
Título:
Spatial and temporal litterfall heterogeneity generated by woody species in the Central Monte
Autor/es:
ALVAREZ, J.A.; VILLAGRA, P.E.; ROSSI, B.E.; CESCA, E.M
Revista:
PLANT ECOLOGY
Editorial:
SPRINGER
Referencias:
Año: 2009 vol. 205 p. 295 - 295
ISSN:
1385-0237
Resumen:
In arid and semiarid environments, the presence of woody species generates a series of environmental gradients that increase spatial heterogeneity and modify the pattern of distribution of the other species. We postulate that the temporal and spatial variability in litter input generated by woody species is a relevant factor in the generation of edaphic heterogeneity by redistribution of nutrients and the physical effects of litter. The objective of this study was to determine the temporal and spatial variability in the amount of litter input under the canopy of dominant woody plants (Prosopis flexuosaProsopis flexuosa and Larrea divaricata) and in exposed areas at the N˜ acun˜a´n Reserve, in the central zone of the Monte desert. Litterfall was collected during 2 years from 30-cm-diameter litter traps distributed at three microsites: under P. flexuosa canopy, underLarrea divaricata) and in exposed areas at the N˜ acun˜a´n Reserve, in the central zone of the Monte desert. Litterfall was collected during 2 years from 30-cm-diameter litter traps distributed at three microsites: under P. flexuosa canopy, underP. flexuosa canopy, under L. divaricata canopy, and in exposed areas. Microhabitats beneath Prosopis showed the highest litter input per m2 (between 320 and 527 g/m2), and, consequently, more than 50% of it fell to the soil beneath the canopy of P. flexuosa. Only 10% fell on exposed areas, which exhibited an annual input rate per m2 of a lower order of magnitude than the sites under Prosopis. Litterfall presented a peak in summer as a consequence of convective storms, and a second one in autumn due to phenological shedding. Our results suggest that woody species have a central importance in the dynamics of nutrients in arid lands by both the increase of total productivity and litterfall, and the spatial and temporal regulation of litter input.canopy, and in exposed areas. Microhabitats beneath Prosopis showed the highest litter input per m2 (between 320 and 527 g/m2), and, consequently, more than 50% of it fell to the soil beneath the canopy of P. flexuosa. Only 10% fell on exposed areas, which exhibited an annual input rate per m2 of a lower order of magnitude than the sites under Prosopis. Litterfall presented a peak in summer as a consequence of convective storms, and a second one in autumn due to phenological shedding. Our results suggest that woody species have a central importance in the dynamics of nutrients in arid lands by both the increase of total productivity and litterfall, and the spatial and temporal regulation of litter input.Prosopis showed the highest litter input per m2 (between 320 and 527 g/m2), and, consequently, more than 50% of it fell to the soil beneath the canopy of P. flexuosa. Only 10% fell on exposed areas, which exhibited an annual input rate per m2 of a lower order of magnitude than the sites under Prosopis. Litterfall presented a peak in summer as a consequence of convective storms, and a second one in autumn due to phenological shedding. Our results suggest that woody species have a central importance in the dynamics of nutrients in arid lands by both the increase of total productivity and litterfall, and the spatial and temporal regulation of litter input.2 (between 320 and 527 g/m2), and, consequently, more than 50% of it fell to the soil beneath the canopy of P. flexuosa. Only 10% fell on exposed areas, which exhibited an annual input rate per m2 of a lower order of magnitude than the sites under Prosopis. Litterfall presented a peak in summer as a consequence of convective storms, and a second one in autumn due to phenological shedding. Our results suggest that woody species have a central importance in the dynamics of nutrients in arid lands by both the increase of total productivity and litterfall, and the spatial and temporal regulation of litter input.P. flexuosa. Only 10% fell on exposed areas, which exhibited an annual input rate per m2 of a lower order of magnitude than the sites under Prosopis. Litterfall presented a peak in summer as a consequence of convective storms, and a second one in autumn due to phenological shedding. Our results suggest that woody species have a central importance in the dynamics of nutrients in arid lands by both the increase of total productivity and litterfall, and the spatial and temporal regulation of litter input.2 of a lower order of magnitude than the sites under Prosopis. Litterfall presented a peak in summer as a consequence of convective storms, and a second one in autumn due to phenological shedding. Our results suggest that woody species have a central importance in the dynamics of nutrients in arid lands by both the increase of total productivity and litterfall, and the spatial and temporal regulation of litter input.Prosopis. Litterfall presented a peak in summer as a consequence of convective storms, and a second one in autumn due to phenological shedding. Our results suggest that woody species have a central importance in the dynamics of nutrients in arid lands by both the increase of total productivity and litterfall, and the spatial and temporal regulation of litter input.