INGEOSUR   20376
INSTITUTO GEOLOGICO DEL SUR
Unidad Ejecutora - UE
artículos
Título:
Contrasting fluid evolution of granulite-facies marbles: implications for a high-T intermediate-P terrain in the Famatinian Range, San-Juan, Argentina
Autor/es:
GALLIEN, F.; MOGESSIE, A; BJERG, E. A.; DELPINO, S.; CASTRO DE MACHUCA, B.
Revista:
MINERALOGY AND PETROLOGY
Editorial:
Springer
Referencias:
Año: 2009 vol. 95 p. 135 - 157
ISSN:
0930-0708
Resumen:
High-temperature, intermediate-pressure calcsilicate marbles occur in the granulite-facies terrain of the La Huerta Range in the Province of San Juan, NW-Argentina, in three bulk-compositional varieties: Type (1) dolomite-absent scapolite-wollastonite-grandite-clinopyroxene-quartz—calcite marbles; Type (2) diopside-forsterite-spinel-corundum—calcite marbles with dolomite exolution lamellae in calcite; Type (3) serpentinized forsterite-spinel-dolomite marbles. An isobaric cooling path from peak-metamorphic conditions of 860°C to 750°C at 6.5 kbar is inferred from scapolite-wollastonitegrandite reaction textures in Type (1) and is consistent with cooling after an advective heat input from related gabbroic and tonalitic intrusive bodies. Stable carbon and oxygen isotope geochemistry was used to decipher the fluid/rock evolution of the three marble types. An interpreted four-stage temperature-time-fluid flow path comprises: (1) infiltration of pre-peak-metamorphic fluids, depleted in ä18O, that caused a shift of primary sedimentary ä18O ratios to lower values (19.6–20.0); (2) syn-metamorphic fluid liberation from Type (1) marbles with evidence for processes close to batch devolatilization that caused a weak coupled 13C and 18O depletion during prograde metamorphism. A different devolatilization behaviour, close to Rayleigh fractionation, texturally associated with fold settings indicates that granulite-facies fluid flow was focused rather than pervasive; (3) H2O-absent conditions were dominant when coronal grandite formed during incipient high-temperature isobaric cooling at the expense of scapolite and wollastonite in the Type (1) marbles; (4) intense post-peak- hydration of Type (2) and Type (3) marbles is the last recognizable metasomatic event. In combination, the three marble types record fluid infiltration both before and after the metamorphic peak.