IBCN   20355
INSTITUTO DE BIOLOGIA CELULAR Y NEUROCIENCIA "PROFESOR EDUARDO DE ROBERTIS"
Unidad Ejecutora - UE
artículos
Título:
Oligodendrogenesis in Iron Deficient Rats. Effect of Apotransferrin
Autor/es:
ROSATO SIRI; BERNABEU R; PAQUINI; ORTIZ; BADACCO
Revista:
JOURNAL OF NEUROSCIENCE RESEARCH
Editorial:
WILEY-LISS, DIV JOHN WILEY & SONS INC
Referencias:
Año: 2010 vol. 88 p. 1695 - 1707
ISSN:
0360-4012
Resumen:
In rats, iron deficiency produces an alteration in myelinformation. However, there is limited information on theeffects of this condition on oligodendroglial cell (OLGc)proliferation and maturation. In the present study, wefurther analyzed the hypomyelination associated withiron deficiency by studying the dynamics of oligodendrogenesis.Rats were fed control (40 mg Fe/kg) oriron-deficient (4 mg Fe/kg) diets from gestation day 5until postnatal day 3 (P3) or 11 (P11). OLGc proliferation,migration and differentiation were investigatedbefore and after an intracranial injection of apotransferrinat 3 days of age (P3). The proliferating cell populationwas evaluated at P3. Iron-deficient (ID) animalsshowed an increase in the oligodendrocyte precursorscell (OPC) population in comparison with controls. Theoverall pattern of migration of cells labeled with BrdUwas investigated at P11. Iron deficiency increased theamount of BrdU1 cells in the corpus callosum (CC) anddecreased OLGc maturation and myelin formation.Changes in nerve conduction were analyzed by measuringvisual evoked potentials. Latency and amplitudewere significantly disturbed in ID rats compared withcontrols. Both parameters were substantially normalizedwhen animals were treated with a single intracranialinjection of 350 ng apotransferrin (aTf). The currentresults give support to the idea that iron deficiencyincreases the number of proliferating and undifferentiatedcells in the CC compared with the control. Treatmentwith aTf almost completely reverted the effects ofiron deficiency, both changing the migration patternand increasing the number of mature cells in the CCand myelin formation.