INVESTIGADORES

CRISTALLINI Ernesto Osvaldo

capítulos de libros

Título:

The Andean thrust system latitudinal variations in structural styles and orogenic shortening

Autor/es:

RAMOS, V.A.; ZAPATA, T.; CRISTALLINI, E.O.

Libro:

Thrust Tectonics and hydrocarbon system

Editorial:

American Association of Petroleum Geologists

Referencias:

Año: 2004; p. 30 - 50

Resumen:

The different segments of the Andean thrust system have distinctive topography
and inferred crustal roots. These two characteristics both depend upon crustal
shortening, and on this basis they provide independent constraints for evaluating
estimates of Cenozoic shortening obtained by balanced structural cross-sections
of different segments of the fold-and-thrust systems. Three transects in the Central
Andes are analyzed: a northern (22238S), a central (32338S), and a southern segment
(37398S). Each segment shows different amounts of orogenic shortening, generated
through a complex combination of thin- and thick-skinned thrusting. Based on known
age constraints, different shortening rates are calculated for each segment. Estimates of
crustal shortening derived from gravity and seismic-refraction data are used to evaluate
interpretations of the structural style. In some segments, where alternative styles were
proposed, the crustal-shortening estimates are used to identify themore realistic models.
Crustal shortening, shortening rates, and the resulting topography decrease progressively
from north to south. These variations cannot be fully explained by differential
fore-arc rotation, as in the Bolivian orocline model. Instead, a close correlation is suggested
between the age of oceanic crust being subducted and the amount of shortening
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
through a complex combination of thin- and thick-skinned thrusting. Based on known
age constraints, different shortening rates are calculated for each segment. Estimates of
crustal shortening derived from gravity and seismic-refraction data are used to evaluate
interpretations of the structural style. In some segments, where alternative styles were
proposed, the crustal-shortening estimates are used to identify themore realistic models.
Crustal shortening, shortening rates, and the resulting topography decrease progressively
from north to south. These variations cannot be fully explained by differential
fore-arc rotation, as in the Bolivian orocline model. Instead, a close correlation is suggested
between the age of oceanic crust being subducted and the amount of shortening
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
(37398S). Each segment shows different amounts of orogenic shortening, generated
through a complex combination of thin- and thick-skinned thrusting. Based on known
age constraints, different shortening rates are calculated for each segment. Estimates of
crustal shortening derived from gravity and seismic-refraction data are used to evaluate
interpretations of the structural style. In some segments, where alternative styles were
proposed, the crustal-shortening estimates are used to identify themore realistic models.
Crustal shortening, shortening rates, and the resulting topography decrease progressively
from north to south. These variations cannot be fully explained by differential
fore-arc rotation, as in the Bolivian orocline model. Instead, a close correlation is suggested
between the age of oceanic crust being subducted and the amount of shortening
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
through a complex combination of thin- and thick-skinned thrusting. Based on known
age constraints, different shortening rates are calculated for each segment. Estimates of
crustal shortening derived from gravity and seismic-refraction data are used to evaluate
interpretations of the structural style. In some segments, where alternative styles were
proposed, the crustal-shortening estimates are used to identify themore realistic models.
Crustal shortening, shortening rates, and the resulting topography decrease progressively
from north to south. These variations cannot be fully explained by differential
fore-arc rotation, as in the Bolivian orocline model. Instead, a close correlation is suggested
between the age of oceanic crust being subducted and the amount of shortening
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and inferred crustal roots. These two characteristics both depend upon crustal
shortening, and on this basis they provide independent constraints for evaluating
estimates of Cenozoic shortening obtained by balanced structural cross-sections
of different segments of the fold-and-thrust systems. Three transects in the Central
Andes are analyzed: a northern (22238S), a central (32338S), and a southern segment
(37398S). Each segment shows different amounts of orogenic shortening, generated
through a complex combination of thin- and thick-skinned thrusting. Based on known
age constraints, different shortening rates are calculated for each segment. Estimates of
crustal shortening derived from gravity and seismic-refraction data are used to evaluate
interpretations of the structural style. In some segments, where alternative styles were
proposed, the crustal-shortening estimates are used to identify themore realistic models.
Crustal shortening, shortening rates, and the resulting topography decrease progressively
from north to south. These variations cannot be fully explained by differential
fore-arc rotation, as in the Bolivian orocline model. Instead, a close correlation is suggested
between the age of oceanic crust being subducted and the amount of shortening
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
through a complex combination of thin- and thick-skinned thrusting. Based on known
age constraints, different shortening rates are calculated for each segment. Estimates of
crustal shortening derived from gravity and seismic-refraction data are used to evaluate
interpretations of the structural style. In some segments, where alternative styles were
proposed, the crustal-shortening estimates are used to identify themore realistic models.
Crustal shortening, shortening rates, and the resulting topography decrease progressively
from north to south. These variations cannot be fully explained by differential
fore-arc rotation, as in the Bolivian orocline model. Instead, a close correlation is suggested
between the age of oceanic crust being subducted and the amount of shortening
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
(37398S). Each segment shows different amounts of orogenic shortening, generated
through a complex combination of thin- and thick-skinned thrusting. Based on known
age constraints, different shortening rates are calculated for each segment. Estimates of
crustal shortening derived from gravity and seismic-refraction data are used to evaluate
interpretations of the structural style. In some segments, where alternative styles were
proposed, the crustal-shortening estimates are used to identify themore realistic models.
Crustal shortening, shortening rates, and the resulting topography decrease progressively
from north to south. These variations cannot be fully explained by differential
fore-arc rotation, as in the Bolivian orocline model. Instead, a close correlation is suggested
between the age of oceanic crust being subducted and the amount of shortening
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
through a complex combination of thin- and thick-skinned thrusting. Based on known
age constraints, different shortening rates are calculated for each segment. Estimates of
crustal shortening derived from gravity and seismic-refraction data are used to evaluate
interpretations of the structural style. In some segments, where alternative styles were
proposed, the crustal-shortening estimates are used to identify themore realistic models.
Crustal shortening, shortening rates, and the resulting topography decrease progressively
from north to south. These variations cannot be fully explained by differential
fore-arc rotation, as in the Bolivian orocline model. Instead, a close correlation is suggested
between the age of oceanic crust being subducted and the amount of shortening
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
he different segments of the Andean thrust system have distinctive topography
and inferred crustal roots. These two characteristics both depend upon crustal
shortening, and on this basis they provide independent constraints for evaluating
estimates of Cenozoic shortening obtained by balanced structural cross-sections
of different segments of the fold-and-thrust systems. Three transects in the Central
Andes are analyzed: a northern (22238S), a central (32338S), and a southern segment
(37398S). Each segment shows different amounts of orogenic shortening, generated
through a complex combination of thin- and thick-skinned thrusting. Based on known
age constraints, different shortening rates are calculated for each segment. Estimates of
crustal shortening derived from gravity and seismic-refraction data are used to evaluate
interpretations of the structural style. In some segments, where alternative styles were
proposed, the crustal-shortening estimates are used to identify themore realistic models.
Crustal shortening, shortening rates, and the resulting topography decrease progressively
from north to south. These variations cannot be fully explained by differential
fore-arc rotation, as in the Bolivian orocline model. Instead, a close correlation is suggested
between the age of oceanic crust being subducted and the amount of shortening
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
through a complex combination of thin- and thick-skinned thrusting. Based on known
age constraints, different shortening rates are calculated for each segment. Estimates of
crustal shortening derived from gravity and seismic-refraction data are used to evaluate
interpretations of the structural style. In some segments, where alternative styles were
proposed, the crustal-shortening estimates are used to identify themore realistic models.
Crustal shortening, shortening rates, and the resulting topography decrease progressively
from north to south. These variations cannot be fully explained by differential
fore-arc rotation, as in the Bolivian orocline model. Instead, a close correlation is suggested
between the age of oceanic crust being subducted and the amount of shortening
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
(37398S). Each segment shows different amounts of orogenic shortening, generated
through a complex combination of thin- and thick-skinned thrusting. Based on known
age constraints, different shortening rates are calculated for each segment. Estimates of
crustal shortening derived from gravity and seismic-refraction data are used to evaluate
interpretations of the structural style. In some segments, where alternative styles were
proposed, the crustal-shortening estimates are used to identify themore realistic models.
Crustal shortening, shortening rates, and the resulting topography decrease progressively
from north to south. These variations cannot be fully explained by differential
fore-arc rotation, as in the Bolivian orocline model. Instead, a close correlation is suggested
between the age of oceanic crust being subducted and the amount of shortening
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
through a complex combination of thin- and thick-skinned thrusting. Based on known
age constraints, different shortening rates are calculated for each segment. Estimates of
crustal shortening derived from gravity and seismic-refraction data are used to evaluate
interpretations of the structural style. In some segments, where alternative styles were
proposed, the crustal-shortening estimates are used to identify themore realistic models.
Crustal shortening, shortening rates, and the resulting topography decrease progressively
from north to south. These variations cannot be fully explained by differential
fore-arc rotation, as in the Bolivian orocline model. Instead, a close correlation is suggested
between the age of oceanic crust being subducted and the amount of shortening
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
8S), a central (32338S), and a southern segment
(37398S). Each segment shows different amounts of orogenic shortening, generated
through a complex combination of thin- and thick-skinned thrusting. Based on known
age constraints, different shortening rates are calculated for each segment. Estimates of
crustal shortening derived from gravity and seismic-refraction data are used to evaluate
interpretations of the structural style. In some segments, where alternative styles were
proposed, the crustal-shortening estimates are used to identify themore realistic models.
Crustal shortening, shortening rates, and the resulting topography decrease progressively
from north to south. These variations cannot be fully explained by differential
fore-arc rotation, as in the Bolivian orocline model. Instead, a close correlation is suggested
between the age of oceanic crust being subducted and the amount of shortening
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
through a complex combination of thin- and thick-skinned thrusting. Based on known
age constraints, different shortening rates are calculated for each segment. Estimates of
crustal shortening derived from gravity and seismic-refraction data are used to evaluate
interpretations of the structural style. In some segments, where alternative styles were
proposed, the crustal-shortening estimates are used to identify themore realistic models.
Crustal shortening, shortening rates, and the resulting topography decrease progressively
from north to south. These variations cannot be fully explained by differential
fore-arc rotation, as in the Bolivian orocline model. Instead, a close correlation is suggested
between the age of oceanic crust being subducted and the amount of shortening
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
8S). Each segment shows different amounts of orogenic shortening, generated
through a complex combination of thin- and thick-skinned thrusting. Based on known
age constraints, different shortening rates are calculated for each segment. Estimates of
crustal shortening derived from gravity and seismic-refraction data are used to evaluate
interpretations of the structural style. In some segments, where alternative styles were
proposed, the crustal-shortening estimates are used to identify themore realistic models.
Crustal shortening, shortening rates, and the resulting topography decrease progressively
from north to south. These variations cannot be fully explained by differential
fore-arc rotation, as in the Bolivian orocline model. Instead, a close correlation is suggested
between the age of oceanic crust being subducted and the amount of shortening
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.
and propagation of the orogenic front toward the foreland. This fact becomes more important
than fore-arc rotation farther south of the Bolivian orocline. On this basis, the
present topography of the Andes, along the Nazca plate boundary, can be correlated with
the age of adjacent oceanic crust.