INVESTIGADORES
STEFANI Pablo Marcelo
artículos
Título:
Effects of Fibers Alkali Treatment on the Resin Transfer Molding Processing and Mechanical Properties of Jute–Vinylester Composites
Autor/es:
E. S. RODRIGUEZ; P. M. STEFANI; A. VAZQUEZ
Revista:
JOURNAL OF COMPOSITE MATERIALS
Editorial:
SAGE
Referencias:
Año: 2007 vol. 41 p. 1729 - 1741
ISSN:
0021-9983
Resumen:
ABSTRACT: The aim of this paper is to evaluate the effect of the alkali treatment on the mechanical properties of jute fibers and its composites. The effect on the processing conditions was also analyzed. Woven jute preforms were used to prepare the composites using the vacuum infusion technique. The fibers were treated with NaOH (5 wt.%) for 24 h at room temperature. Single filament tests showed that the treatment was detrimental for the mechanical properties of the fibers. The injection times increased in the treated jute preforms as a consequence of the increase in the exposed area and the flow resistance. The preform permeability decreased, also, in the tubular structure collapse of the fibers, which could reduce the capillary pressure. Flexural and impact properties of the treated jute composites decreased mainly in the lower mechanical properties of the fibers. on the mechanical properties of jute fibers and its composites. The effect on the processing conditions was also analyzed. Woven jute preforms were used to prepare the composites using the vacuum infusion technique. The fibers were treated with NaOH (5 wt.%) for 24 h at room temperature. Single filament tests showed that the treatment was detrimental for the mechanical properties of the fibers. The injection times increased in the treated jute preforms as a consequence of the increase in the exposed area and the flow resistance. The preform permeability decreased, also, in the tubular structure collapse of the fibers, which could reduce the capillary pressure. Flexural and impact properties of the treated jute composites decreased mainly in the lower mechanical properties of the fibers. on the mechanical properties of jute fibers and its composites. The effect on the processing conditions was also analyzed. Woven jute preforms were used to prepare the composites using the vacuum infusion technique. The fibers were treated with NaOH (5 wt.%) for 24 h at room temperature. Single filament tests showed that the treatment was detrimental for the mechanical properties of the fibers. The injection times increased in the treated jute preforms as a consequence of the increase in the exposed area and the flow resistance. The preform permeability decreased, also, in the tubular structure collapse of the fibers, which could reduce the capillary pressure. Flexural and impact properties of the treated jute composites decreased mainly in the lower mechanical properties of the fibers. on the mechanical properties of jute fibers and its composites. The effect on the processing conditions was also analyzed. Woven jute preforms were used to prepare the composites using the vacuum infusion technique. The fibers were treated with NaOH (5 wt.%) for 24 h at room temperature. Single filament tests showed that the treatment was detrimental for the mechanical properties of the fibers. The injection times increased in the treated jute preforms as a consequence of the increase in the exposed area and the flow resistance. The preform permeability decreased, also, in the tubular structure collapse of the fibers, which could reduce the capillary pressure. Flexural and impact properties of the treated jute composites decreased mainly in the lower mechanical properties of the fibers. on the mechanical properties of jute fibers and its composites. The effect on the processing conditions was also analyzed. Woven jute preforms were used to prepare the composites using the vacuum infusion technique. The fibers were treated with NaOH (5 wt.%) for 24 h at room temperature. Single filament tests showed that the treatment was detrimental for the mechanical properties of the fibers. The injection times increased in the treated jute preforms as a consequence of the increase in the exposed area and the flow resistance. The preform permeability decreased, also, in the tubular structure collapse of the fibers, which could reduce the capillary pressure. Flexural and impact properties of the treated jute composites decreased mainly in the lower mechanical properties of the fibers. on the mechanical properties of jute fibers and its composites. The effect on the processing conditions was also analyzed. Woven jute preforms were used to prepare the composites using the vacuum infusion technique. The fibers were treated with NaOH (5 wt.%) for 24 h at room temperature. Single filament tests showed that the treatment was detrimental for the mechanical properties of the fibers. The injection times increased in the treated jute preforms as a consequence of the increase in the exposed area and the flow resistance. The preform permeability decreased, also, in the tubular structure collapse of the fibers, which could reduce the capillary pressure. Flexural and impact properties of the treated jute composites decreased mainly in the lower mechanical properties of the fibers. on the mechanical properties of jute fibers and its composites. The effect on the processing conditions was also analyzed. Woven jute preforms were used to prepare the composites using the vacuum infusion technique. The fibers were treated with NaOH (5 wt.%) for 24 h at room temperature. Single filament tests showed that the treatment was detrimental for the mechanical properties of the fibers. The injection times increased in the treated jute preforms as a consequence of the increase in the exposed area and the flow resistance. The preform permeability decreased, also, in the tubular structure collapse of the fibers, which could reduce the capillary pressure. Flexural and impact properties of the treated jute composites decreased mainly in the lower mechanical properties of the fibers. The aim of this paper is to evaluate the effect of the alkali treatment on the mechanical properties of jute fibers and its composites. The effect on the processing conditions was also analyzed. Woven jute preforms were used to prepare the composites using the vacuum infusion technique. The fibers were treated with NaOH (5 wt.%) for 24 h at room temperature. Single filament tests showed that the treatment was detrimental for the mechanical properties of the fibers. The injection times increased in the treated jute preforms as a consequence of the increase in the exposed area and the flow resistance. The preform permeability decreased, also, in the tubular structure collapse of the fibers, which could reduce the capillary pressure. Flexural and impact properties of the treated jute composites decreased mainly in the lower mechanical properties of the fibers. KEY WORDS: natural fiber composites, mechanical properties, alkali treatment, resin transfer molding, vacuum infusion. resin transfer molding, vacuum infusion. resin transfer molding, vacuum infusion. resin transfer molding, vacuum infusion. resin transfer molding, vacuum infusion. resin transfer molding, vacuum infusion. resin transfer molding, vacuum infusion. natural fiber composites, mechanical properties, alkali treatment, resin transfer molding, vacuum infusion.