IBR   13079
INSTITUTO DE BIOLOGIA MOLECULAR Y CELULAR DE ROSARIO
Unidad Ejecutora - UE
artículos
Título:
Egg water from the amphibian Bufo arenarum modulates the ability of homologous sperm to undergo the acrosome reaction in the presence of the vitelline envelope.
Autor/es:
KRAPF D; O'BRIEN ED; CABADA MO; VISCONTI PE; ARRANZ SE
Revista:
BIOLOGY OF REPRODUCTION
Editorial:
Society for the Study of Reproduction
Referencias:
Año: 2009 vol. 80 p. 311 - 319
ISSN:
0006-3363
Resumen:
perm from the toad Bufo arenarum must penetrate the egg jelly before reaching the vitelline envelope (VE), where the acrosome reaction is triggered. When the jelly coat is removed, sperm still bind to the VE, but acrosomal exocytosis is not promoted. Our previous work demonstrated that diffusible substances of the jelly coat, termed "egg water" (EW), triggered capacitation-like changes in B. arenarum sperm, promoting the acquisition of a transient fertilizing capacity. In the present work, we correlated this fertilizing capacity with the ability of the sperm to undergo the acrosome reaction, further substantiating the role of the jelly coat in fertilization. When sperm were exposed to the VE, only those preincubated in EW for 5 or 8 min underwent an increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)), which led to acrosomal exocytosis. Responsiveness to the VE was not acquired on preincubation in EW for 2 or 15 min or in Ringer solution regardless of the preincubation time. In contrast, depletion of intracellular Ca(2+) stores (induced by thapsigargin) promoted [Ca(2+)](i) rise and the acrosome reaction even in sperm that were not exposed to EW. Acrosomal exocytosis was blocked by the presence of Ca(2+) chelators independent of whether a physiological or pharmacological stimulus was used. However, Ni(2+) and mibefradil prevented [Ca(2+)](i) rise and the acrosome reaction of sperm exposed to the VE but not of sperm exposed to thapsigargin. These data suggest that the acrosomal responsiveness of B. arenarum sperm, present during a narrow period, is acquired during EW incubation and involves the modulation of a voltage-dependent Ca(2+) channel.