IBR   13079
INSTITUTO DE BIOLOGIA MOLECULAR Y CELULAR DE ROSARIO
Unidad Ejecutora - UE
artículos
Título:
Biphasic role of calcium in mouse sperm capacitation signaling pathways
Autor/es:
NAVARRETE F; GARCIA-VAZQUEZ, FA; ALVAU,A; ESCOFFIER J; KRAPF D; SÁNCHEZ-CÁRDENAS C; SALICIONI AM; DARSZON A; VISCONTI PE
Revista:
JOURNAL OF CELLULAR PHYSIOLOGY
Editorial:
WILEY-LISS, DIV JOHN WILEY & SONS INC
Referencias:
Lugar: New York; Año: 2015 vol. 230 p. 1758 - 1769
ISSN:
0021-9541
Resumen:
Mammalian sperm acquire fertilizing ability in the female tract in a process known as capacitation. At the molecular level, capacitation is associated with up-regulation of a cAMP-dependent pathway, changes in intracellular pH, intracellular Ca(2+) , and an increase in tyrosine phosphorylation. How these signaling systems interact during capacitation is not well understood. Results presented in this study indicate that Ca(2+) ions have a biphasic role in the regulation of cAMP-dependent signaling. Media without added Ca(2+) salts (nominal zero Ca(2+) ) still contain micromolar concentrations of this ion. Sperm incubated in this medium did not undergo PKA activation or the increase in tyrosine phosphorylation suggesting that these phosphorylation pathways require Ca(2+) . However, chelation of the extracellular Ca(2+) traces by EGTA induced both cAMP-dependent phosphorylation and the increase in tyrosine phosphorylation. The EGTA effect in nominal zero Ca(2+) media was mimicked by two calmodulin antagonists, W7 and calmidazolium, and by the calcineurin inhibitor cyclosporine A. These results suggest that Ca(2+) ions regulate sperm cAMP and tyrosine phosphorylation pathways in a biphasic manner and that some of its effects are mediated by calmodulin. Interestingly, contrary to wild-type mouse sperm, sperm from CatSper1 KO mice underwent PKA activation and an increase in tyrosine phosphorylation upon incubation in nominal zero Ca(2+) media. Therefore, sperm lacking Catsper Ca(2+) channels behave as wild-type sperm incubated in the presence of EGTA. This latter result suggests that Catsper transports the Ca(2+) involved in the regulation of cAMP-dependent and tyrosine phosphorylation pathways required for sperm capacitation