IALP   13078
INSTITUTO DE ASTROFISICA LA PLATA
Unidad Ejecutora - UE
artículos
Título:
Discrepancies between the [OIII] and [SIII] temperatures in HII regions
Autor/es:
BINETTE, L.; MATADAMAS, R.; HÄGELE, G.; NICHOLLS, D.; MAGRIS, G.; PEÑA-GUERRERO, M.; MORISSET, C.; RODRÍGUEZ-GONZÁLEZ, A.
Revista:
ASTRONOMY AND ASTROPHYSICS
Editorial:
EDP SCIENCES S A
Referencias:
Lugar: Paris; Año: 2012 vol. 547 p. 29 - 43
ISSN:
0004-6361
Resumen:
Context. Analysis of published [OIII] and [SIII] temperatures measurements of emission line objects consisting of Hii galaxies, giant-extragalactic HII regions, Galactic Hii regions, and Hii regions from the Magellanic Clouds reveal that the [OIII] temperatures are higher than the corresponding values from [SIII] in most objects with gas metallicities in excess of 0.2 solar. For the coolest nebulae (the highest metallicities), the [OIII] temperature excess can reach ~3000K. Aims. We look for an explanation for these temperature differences and explore the parameter space of models with the aim of reproducing the observed trend of TOIII > TSIII in HII regions with temperatures below 14 000 K. Methods. Using standard photoionization models, we varied the ionization parameter, the hardness of the ionizing continuum, and the gas metallicities in order to characterize how models behave with respect to the observations. We introduced temperature inhomogeneities and varied their mean squared amplitude t2.We explored the possibility of inhomogeneities in abundances by combining two models of widely different metallicity. We calculated models that consider the possibility of a non-Maxwell-Boltzmann energy< distribution (a K-distribution) for the electron energies. We also considered shock heating within the photoionized nebula. Results. Simple photoionization calculations yield nearly equal [OIII] and [SIII] temperatures in the domain of interest. Hence these models fail to reproduce the [OIII] temperature excess. Models that consider temperature inhomogeneities, as measured by the mean squared amplitude t2, also fail in the regime where TOIII < 14 000 K. Three options remain that can reproduce the observed excess in TOIII temperatures: (1) large metallicity inhomogeneities in the nebula; a (2) K-distribution for the electron energies; and (3) shock waves that propagate in the photoionized plasma at velocities ~60 km/s. Conclusions. The observed nebular temperatures are not reproduced by varying the input parameters in the pure photoionization case nor by assuming local temperature inhomogeneities. We find that (1) metallicity inhomogeneities of the nebular gas; (2) shock waves of velocities TOIII.