INQUIMAE   12526
INSTITUTO DE QUIMICA, FISICA DE LOS MATERIALES, MEDIOAMBIENTE Y ENERGIA
Unidad Ejecutora - UE
artículos
Título:
Communication: Isotopic effects on tunneling motions in the water trimer
Autor/es:
DANIEL LARIA; PABLO E. VIDELA; PETER ROSSKY
Revista:
JOURNAL OF CHEMICAL PHYSICS
Editorial:
AMER INST PHYSICS
Referencias:
Lugar: New York; Año: 2016 vol. 144
ISSN:
0021-9606
Resumen:
We present results of ring polymer molecular dynamics simulations that shed light on the effects of nuclear quantum fluctuations on tunneling motions in cyclic [H2O]3 and [D2O]3, at the representative temperature of T = 75 K. In particular, we focus attention on free energies associated with two key isomerization processes: The first one corresponds to flipping transitions of dangling OH bonds, between up and down positions with respect to the O-O-O plane of the cluster; the second involves the interchange between connecting and dangling hydrogen bond character of the H-atoms in a tagged water molecule. Zero point energy and tunneling effects lead to sensible reductions of the free energy barriers. Due to the lighter nature of the H nuclei, these modifications are more marked in [H2O]3 than in [D2O]3. Estimates of the characteristic time scales describing the flipping transitions are consistent with those predicted based on standard transition-state-approximation arguments.