INQUIMAE   12526
INSTITUTO DE QUIMICA, FISICA DE LOS MATERIALES, MEDIOAMBIENTE Y ENERGIA
Unidad Ejecutora - UE
artículos
Título:
Development of an electrochemical sensor for the determination of the flavonoid luteolin in peanut hull samples
Autor/es:
TESIO, A.Y.; GRANERO, A.M.; VETTORAZZI, N.R.; FERREYRA, N.F; RIVAS G. A.; FERNÁNDEZ, H; ZON, M.A.
Revista:
MICROCHEMICAL JOURNAL
Editorial:
ELSEVIER SCIENCE BV
Referencias:
Lugar: Amsterdam; Año: 2014 vol. 115 p. 100 - 115
ISSN:
0026-265X
Resumen:
Abstract We describe the development of an electrochemical sensor based on glassy carbon electrodes modified with multiwalled carbon nanotubes dispersed in low molecular weight polyethylenimine for the determination of luteolin in peanut hulls. A well defined quasi-reversible surface redox couple was found using cyclic and square wave voltammetries for luteolin in 1.0molL-1 HClO4 aqueous solutions. The best accumulation potential and the accumulation time were 0.55V and 20min, respectively. An optimal ratio of 1:5 for multiwalled carbon nanotubes/polyethylenimine was used to prepare dispersions.The linear range was from 2.4×10-3 to 1.75μmolL-1. The luteolin contents determined in two peanut hull samples were (1.18±0.08) and (1.47±0.09) g per 100g of sample, being in very good agreement with those values obtained from the same samples using HPLC. The limits of detection and quantification were 5.0×10-10 and 1.5×10-9molL-1, respectively. The reproducibility and the repeatability were 8.0 and 7.3%, respectively. The modified glassy carbon electrode was stable even after 23days. © 2014 Elsevier B.V.