INQUIMAE   12526
INSTITUTO DE QUIMICA, FISICA DE LOS MATERIALES, MEDIOAMBIENTE Y ENERGIA
Unidad Ejecutora - UE
artículos
Título:
Hydrogen bond structure and dynamics in aqueous electrolytes at ambient and supercritial conditions
Autor/es:
E. GUARDIA, D. LARIA, J. MARTI
Revista:
JOURNAL OF PHYSICAL CHEMISTRY B
Editorial:
AMERICAL CHEMICAL SOCIETY
Referencias:
Lugar: WASHINGTON DC; Año: 2006 vol. 110 p. 6332 - 6337
ISSN:
1089-5647
Resumen:
Hydrogen bond (HB) connectivity in aqueous electrolyte solutions at ambient and supercritical conditions has been investigated by molecular dynamics techniques. Alkali metal and halides with different sizes have been considered. Modifications in the water HB architecture are more noticeable in the first ionic solvation shells and do not persist beyond the second shells. The coordination pattern is established between partners located in the first and second solvation shells. High-temperature results show dramatic reductions in the coordination number of water; at liquidlike densities the number of HBs is close to 2, while in steamlike environments water monomers are predominant. The addition of ions does not bring important modifications in the original HB structure for pure water. From the dynamical side, the lifetime of HBs shows minor modifications due to the simultaneous competing effects from a weaker HB structure combined with a slower reorientational dynamics of water induced by the Coulomb coupling with solute. At supercritical conditions, the overall dynamics of HB is roughly 1 order of magnitude faster than that at ambient conditions, regardless of the particular density considered.