CICYTTP   12500
CENTRO DE INVESTIGACION CIENTIFICA Y DE TRANSFERENCIA TECNOLOGICA A LA PRODUCCION
Unidad Ejecutora - UE
artículos
Título:
Electromyography and the evolution of motor control: limitations and insights
Autor/es:
HERREL, A; SCHAERLAEKEN, V; MEYERS, J; NISHIKAWA, K; ABDALA, V; MANZANO, A AND P. AERTS
Revista:
Integrative and Comparative Biology
Editorial:
Oxford University Press
Referencias:
Lugar: Oxford; Año: 2008 vol. 48 p. 261 - 271
ISSN:
1540-7063
Resumen:
Synopsis Electromyography (EMG), or the study of muscle activation patterns, has long been used to infer central nervous system (CNS) control of the musculoskeletal system and the evolution of that control. As the activation of the muscles at the level of the periphery is a reflection of the interaction of descending influences and local reflex control, EMG is an important tool in integrated investigations of the evolution of coordination in complex, musculoskeletal systems. Yet, the use of EMG as a tool to understand the evolution of motor control has its limitations. We here review the potential limitations and opportunities of the use of EMG in studying the evolution of motor control in vertebrates and provide original previously unpublished data to illustrate this. The relative timing of activation of a set of muscles can be used to evaluate CNS coordination of the components in a musculoskeletal system. Studies of relative timing reveal task-dependent variability in the recruitment of different populations of muscle fibers (i.e., different fiber types) within a single muscle, and left–right asymmetries in activation that need to be taken into account in comparative studies. The magnitude of muscle recruitment is strongly influenced by the instantaneous demands imposed on the system, and is likely determined by local reflex-control systems. Consequently, using EMG to make meaningful inferences about evolutionary changes in musculoskeletal control requires comparisons across similar functional tasks. Moreover, our data show that inferences about the evolution of motor control are limited in their explanatory power without proper insights into the kinematics and dynamics of a system.Electromyography (EMG), or the study of muscle activation patterns, has long been used to infer central nervous system (CNS) control of the musculoskeletal system and the evolution of that control. As the activation of the muscles at the level of the periphery is a reflection of the interaction of descending influences and local reflex control, EMG is an important tool in integrated investigations of the evolution of coordination in complex, musculoskeletal systems. Yet, the use of EMG as a tool to understand the evolution of motor control has its limitations. We here review the potential limitations and opportunities of the use of EMG in studying the evolution of motor control in vertebrates and provide original previously unpublished data to illustrate this. The relative timing of activation of a set of muscles can be used to evaluate CNS coordination of the components in a musculoskeletal system. Studies of relative timing reveal task-dependent variability in the recruitment of different populations of muscle fibers (i.e., different fiber types) within a single muscle, and left–right asymmetries in activation that need to be taken into account in comparative studies. The magnitude of muscle recruitment is strongly influenced by the instantaneous demands imposed on the system, and is likely determined by local reflex-control systems. Consequently, using EMG to make meaningful inferences about evolutionary changes in musculoskeletal control requires comparisons across similar functional tasks. Moreover, our data show that inferences about the evolution of motor control are limited in their explanatory power without proper insights into the kinematics and dynamics of a system.