IFIBYNE   05513
INSTITUTO DE FISIOLOGIA, BIOLOGIA MOLECULAR Y NEUROCIENCIAS
Unidad Ejecutora - UE
artículos
Título:
Informational conflicts created by the waggle dance.
Autor/es:
GRÜTER, CHRISTOPH; BALBUENA, M SOL; FARINA, WALTER M
Revista:
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON. SERIES B: BIOLOGICAL SCIENCES.
Editorial:
The Royal Society
Referencias:
Lugar: Londres; Año: 2008 p. 1321 - 1327
ISSN:
0962-8452
Resumen:
The honeybee (Apis mellifera) waggle dance is one of the most intriguing animal communication signals. A dancing bee communicates the location of a profitable food source and its odour. Followers may often experience situations in which dancers indicate an unfamiliar location but carry the scent of a flower species the followers experienced previously at different locations. Food scents often reactivate bees to resume food collection at previously visited food patches. This double function of the dance creates a conflict between the social vector information and the private navigational information. We investigated which kind of information followers with field experience use in this situation and found that followers usually ignored the spatial information encoded by the waggle dance even if they followed a dance thoroughly (five waggle runs or more). They relied on private information about food source locations instead (in 93% of all cases). Furthermore, foragers preferred to follow dancers carrying food odours they knew from previous field trips, independently of the spatial information encoded in the dance. Surprisingly, neither odour identity nor the location indicated by the dancer was an important factor for the reactivation success of a dance. Our results contrast with the assumption that (i) followers usually try to decode the vector information and (ii) dances indicating an unfamiliar location are of little interest to experienced foragers. dancing bee communicates the location of a profitable food source and its odour. Followers may often experience situations in which dancers indicate an unfamiliar location but carry the scent of a flower species the followers experienced previously at different locations. Food scents often reactivate bees to resume food collection at previously visited food patches. This double function of the dance creates a conflict between the social vector information and the private navigational information. We investigated which kind of information followers with field experience use in this situation and found that followers usually ignored the spatial information encoded by the waggle dance even if they followed a dance thoroughly (five waggle runs or more). They relied on private information about food source locations instead (in 93% of all cases). Furthermore, foragers preferred to follow dancers carrying food odours they knew from previous field trips, independently of the spatial information encoded in the dance. Surprisingly, neither odour identity nor the location indicated by the dancer was an important factor for the reactivation success of a dance. Our results contrast with the assumption that (i) followers usually try to decode the vector information and (ii) dances indicating an unfamiliar location are of little interest to experienced foragers. dancing bee communicates the location of a profitable food source and its odour. Followers may often experience situations in which dancers indicate an unfamiliar location but carry the scent of a flower species the followers experienced previously at different locations. Food scents often reactivate bees to resume food collection at previously visited food patches. This double function of the dance creates a conflict between the social vector information and the private navigational information. We investigated which kind of information followers with field experience use in this situation and found that followers usually ignored the spatial information encoded by the waggle dance even if they followed a dance thoroughly (five waggle runs or more). They relied on private information about food source locations instead (in 93% of all cases). Furthermore, foragers preferred to follow dancers carrying food odours they knew from previous field trips, independently of the spatial information encoded in the dance. Surprisingly, neither odour identity nor the location indicated by the dancer was an important factor for the reactivation success of a dance. Our results contrast with the assumption that (i) followers usually try to decode the vector information and (ii) dances indicating an unfamiliar location are of little interest to experienced foragers. dancing bee communicates the location of a profitable food source and its odour. Followers may often experience situations in which dancers indicate an unfamiliar location but carry the scent of a flower species the followers experienced previously at different locations. Food scents often reactivate bees to resume food collection at previously visited food patches. This double function of the dance creates a conflict between the social vector information and the private navigational information. We investigated which kind of information followers with field experience use in this situation and found that followers usually ignored the spatial information encoded by the waggle dance even if they followed a dance thoroughly (five waggle runs or more). They relied on private information about food source locations instead (in 93% of all cases). Furthermore, foragers preferred to follow dancers carrying food odours they knew from previous field trips, independently of the spatial information encoded in the dance. Surprisingly, neither odour identity nor the location indicated by the dancer was an important factor for the reactivation success of a dance. Our results contrast with the assumption that (i) followers usually try to decode the vector information and (ii) dances indicating an unfamiliar location are of little interest to experienced foragers. dancing bee communicates the location of a profitable food source and its odour. Followers may often experience situations in which dancers indicate an unfamiliar location but carry the scent of a flower species the followers experienced previously at different locations. Food scents often reactivate bees to resume food collection at previously visited food patches. This double function of the dance creates a conflict between the social vector information and the private navigational information. We investigated which kind of information followers with field experience use in this situation and found that followers usually ignored the spatial information encoded by the waggle dance even if they followed a dance thoroughly (five waggle runs or more). They relied on private information about food source locations instead (in 93% of all cases). Furthermore, foragers preferred to follow dancers carrying food odours they knew from previous field trips, independently of the spatial information encoded in the dance. Surprisingly, neither odour identity nor the location indicated by the dancer was an important factor for the reactivation success of a dance. Our results contrast with the assumption that (i) followers usually try to decode the vector information and (ii) dances indicating an unfamiliar location are of little interest to experienced foragers. dancing bee communicates the location of a profitable food source and its odour. Followers may often experience situations in which dancers indicate an unfamiliar location but carry the scent of a flower species the followers experienced previously at different locations. Food scents often reactivate bees to resume food collection at previously visited food patches. This double function of the dance creates a conflict between the social vector information and the private navigational information. We investigated which kind of information followers with field experience use in this situation and found that followers usually ignored the spatial information encoded by the waggle dance even if they followed a dance thoroughly (five waggle runs or more). They relied on private information about food source locations instead (in 93% of all cases). Furthermore, foragers preferred to follow dancers carrying food odours they knew from previous field trips, independently of the spatial information encoded in the dance. Surprisingly, neither odour identity nor the location indicated by the dancer was an important factor for the reactivation success of a dance. Our results contrast with the assumption that (i) followers usually try to decode the vector information and (ii) dances indicating an unfamiliar location are of little interest to experienced foragers. dancing bee communicates the location of a profitable food source and its odour. Followers may often experience situations in which dancers indicate an unfamiliar location but carry the scent of a flower species the followers experienced previously at different locations. Food scents often reactivate bees to resume food collection at previously visited food patches. This double function of the dance creates a conflict between the social vector information and the private navigational information. We investigated which kind of information followers with field experience use in this situation and found that followers usually ignored the spatial information encoded by the waggle dance even if they followed a dance thoroughly (five waggle runs or more). They relied on private information about food source locations instead (in 93% of all cases). Furthermore, foragers preferred to follow dancers carrying food odours they knew from previous field trips, independently of the spatial information encoded in the dance. Surprisingly, neither odour identity nor the location indicated by the dancer was an important factor for the reactivation success of a dance. Our results contrast with the assumption that (i) followers usually try to decode the vector information and (ii) dances indicating an unfamiliar location are of little interest to experienced foragers. dancing bee communicates the location of a profitable food source and its odour. Followers may often experience situations in which dancers indicate an unfamiliar location but carry the scent of a flower species the followers experienced previously at different locations. Food scents often reactivate bees to resume food collection at previously visited food patches. This double function of the dance creates a conflict between the social vector information and the private navigational information. We investigated which kind of information followers with field experience use in this situation and found that followers usually ignored the spatial information encoded by the waggle dance even if they followed a dance thoroughly (five waggle runs or more). They relied on private information about food source locations instead (in 93% of all cases). Furthermore, foragers preferred to follow dancers carrying food odours they knew from previous field trips, independently of the spatial information encoded in the dance. Surprisingly, neither odour identity nor the location indicated by the dancer was an important factor for the reactivation success of a dance. Our results contrast with the assumption that (i) followers usually try to decode the vector information and (ii) dances indicating an unfamiliar location are of little interest to experienced foragers. Apis mellifera) waggle dance is one of the most intriguing animal communication signals. A dancing bee communicates the location of a profitable food source and its odour. Followers may often experience situations in which dancers indicate an unfamiliar location but carry the scent of a flower species the followers experienced previously at different locations. Food scents often reactivate bees to resume food collection at previously visited food patches. This double function of the dance creates a conflict between the social vector information and the private navigational information. We investigated which kind of information followers with field experience use in this situation and found that followers usually ignored the spatial information encoded by the waggle dance even if they followed a dance thoroughly (five waggle runs or more). They relied on private information about food source locations instead (in 93% of all cases). Furthermore, foragers preferred to follow dancers carrying food odours they knew from previous field trips, independently of the spatial information encoded in the dance. Surprisingly, neither odour identity nor the location indicated by the dancer was an important factor for the reactivation success of a dance. Our results contrast with the assumption that (i) followers usually try to decode the vector information and (ii) dances indicating an unfamiliar location are of little interest to experienced foragers.