IFIBYNE   05513
INSTITUTO DE FISIOLOGIA, BIOLOGIA MOLECULAR Y NEUROCIENCIAS
Unidad Ejecutora - UE
artículos
Título:
Guard cell-specific inhibition of Arabidopsis MPK3
Autor/es:
GUSTAVO E. GUDESBLAT; NORBERTO D. IUSEM; PETER C, MORRIS
Revista:
NEW PHYTOLOGIST
Editorial:
Blackwell
Referencias:
Lugar: Oxford, Edimburgh; Año: 2007 vol. 173 p. 713 - 721
ISSN:
0028-646X
Resumen:
MAP kinases have been linked to guard cell signalling. Arabidopsis thaliana MAP Kinase 3 (MPK3) is known to be activated by abscisic acid (ABA) and hydrogen peroxide (H2O2), which also control stomatal movements. We therefore studied the possible role of MPK3 in guard cell signalling through guard cell-specific antisense inhibition of MPK3 expression. Such transgenic plants contained reduced levels of MPK3 mRNA in the guard cells and displayed partial insensitivity to ABA in inhibition of stomatal opening, but responded normally to this hormone in stomatal closure. However, ABA-induced stomatal closure was reduced compared with controls when cytoplasmic alkalinization was prevented with sodium butyrate. MPK3 antisense plants were less sensitive to exogenous H2O2, both in inhibition of stomatal opening and in promotion of stomatal closure, thus MPK3 is required for the signalling of this compound. ABAinduced H2O2 synthesis was normal in these plants, indicating that MPK3 probably acts in signalling downstream of H2O2. These results provide clear evidence for the important role of MPK3 in the perception of ABA and H2O2 in guard cells.Arabidopsis thaliana MAP Kinase 3 (MPK3) is known to be activated by abscisic acid (ABA) and hydrogen peroxide (H2O2), which also control stomatal movements. We therefore studied the possible role of MPK3 in guard cell signalling through guard cell-specific antisense inhibition of MPK3 expression. Such transgenic plants contained reduced levels of MPK3 mRNA in the guard cells and displayed partial insensitivity to ABA in inhibition of stomatal opening, but responded normally to this hormone in stomatal closure. However, ABA-induced stomatal closure was reduced compared with controls when cytoplasmic alkalinization was prevented with sodium butyrate. MPK3 antisense plants were less sensitive to exogenous H2O2, both in inhibition of stomatal opening and in promotion of stomatal closure, thus MPK3 is required for the signalling of this compound. ABAinduced H2O2 synthesis was normal in these plants, indicating that MPK3 probably acts in signalling downstream of H2O2. These results provide clear evidence for the important role of MPK3 in the perception of ABA and H2O2 in guard cells.