IFIBYNE   05513
INSTITUTO DE FISIOLOGIA, BIOLOGIA MOLECULAR Y NEUROCIENCIAS
Unidad Ejecutora - UE
artículos
Título:
Immunohistochemical localization of Vascular Endothelial Growth Factor and its receptor Flk-1 in the amphibian developing olfactory system
Autor/es:
POZZI A; YOVANOVICH CA; JUNGBLUT LD; HEER T; PAZ DA
Revista:
ANATOMY AND EMBRYOLOGY
Editorial:
Springer
Referencias:
Año: 2006 vol. 211 p. 549 - 557
ISSN:
0340-2061
Resumen:
In the last years several studies have shown that vascular endothelial growth factor (VEGF) is present in neural stem cells and mature neurons from different neural tissues where it may play an important role as a neuroproliferative and/or antiapoptotic factor. The olfactory neuroepithelium has the capability to replace dying neurons with new neurons formed by cell division from stem cells in the basal region of the epithelium. The present study demonstrates, for the first time, that VEGF is present in the olfactory epithelium, nerves and bulbs (both main and accessory) during the development of the toad Bufo arenarum. In this report, we detected VEGF immunoreactivity in mature olfactory neurons from early larval stages until the beginning of the metamorphic climax. VEGF expression decreases dramatically after metamorphosis. VEGF receptor Flk-1 was localized by immunohistochemistry, from premetamorphic larval stages until the climax in the neurons of the olfactory epithelium with a more intense labeling in the basal cell layer. Double-label immunofluorescence studies localized VEGF to the cytoplasm and the nucleus of mature neurons whereas Flk-1 was expressed in cell membranes. Flk-1 was present in neurons of both the main and accessory olfactory bulbs. After the end of metamorphosis, Flk-1 expression was limited to basal cells in the olfactory epithelium and Bowman´s glands. The main and accessory olfactory bulbs showed the same pattern of Flk-1 immunostaining before and after the end of metamorphosis. The presence of VEGF and its receptor in the olfactory system suggests that VEGF may play an important role during neural development.