IFIBYNE   05513
INSTITUTO DE FISIOLOGIA, BIOLOGIA MOLECULAR Y NEUROCIENCIAS
Unidad Ejecutora - UE
artículos
Título:
Regulating the regulators: SR proteins under scrutiny
Autor/es:
RISSO, GUILLERMO; PELISCH, FEDERICO; QUAGLINO, ANA; POZZI, BERTA; SREBROW, ANABELLA
Revista:
IUBMB LIFE
Editorial:
JOHN WILEY & SONS INC
Referencias:
Lugar: New York; Año: 2012
ISSN:
1521-6543
Resumen:
<!-- /* Font Definitions */ @font-face {font-family:Cambria; panose-1:2 4 5 3 5 4 6 3 2 4; mso-font-charset:0; mso-generic-font-family:auto; mso-font-pitch:variable; mso-font-signature:-536870145 1073743103 0 0 415 0;} @font-face {font-family:Palatino; panose-1:2 0 5 0 0 0 0 0 0 0; mso-font-charset:0; mso-generic-font-family:auto; mso-font-pitch:variable; mso-font-signature:3 0 0 0 1 0;} /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-unhide:no; mso-style-qformat:yes; mso-style-parent:""; margin:0cm; margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-fareast-font-family:"Times New Roman"; mso-bidi-font-family:"Times New Roman"; mso-ansi-language:ES-TRAD; mso-fareast-language:EN-US;} p {mso-style-noshow:yes; mso-style-priority:99; mso-margin-top-alt:auto; margin-right:0cm; mso-margin-bottom-alt:auto; margin-left:0cm; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman"; mso-ansi-language:ES-AR; mso-fareast-language:ES-AR;} .MsoChpDefault {mso-style-type:export-only; mso-default-props:yes; font-size:10.0pt; mso-ansi-font-size:10.0pt; mso-bidi-font-size:10.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-hansi-font-family:Cambria;} @page WordSection1 {size:612.0pt 792.0pt; margin:72.0pt 90.0pt 72.0pt 90.0pt; mso-header-margin:36.0pt; mso-footer-margin:36.0pt; mso-paper-source:0;} div.WordSection1 {page:WordSection1;} --> Serine/arginine-rich (SR) proteins are among the most studied splicing regulators. They constitute a family of evolutionarily conserved proteins that, apart from their initially identified and deeply studied role in splicing regulation, have been implicated in genome stability, chromatin binding, transcription elongation, mRNA stability, mRNA export and mRNA translation. Remarkably, this list of SR protein activities seems far from complete, as unexpected functions keep being unravelled. An intriguing aspect that awaits further investigation is how the multiple tasks of SR proteins are concertedly regulated within mammalian cells. In this article, we first discuss recent findings regarding the regulation of SR protein expression, activity and accessibility. We dive into recent studies describing SR protein auto-regulatory feedback loops involving different molecular mechanisms such as unproductive splicing, microRNA-mediated regulation, and translational repression. In addition, we take into account another step of regulation of SR proteins, presenting new findings about a variety of post-translational modifications by proteomics approaches and how some of these modifications can regulate SR protein sub-cellular localization or stability. Towards the end, we focus in two recently revealed functions of SR proteins beyond mRNA biogenesis and metabolism, the regulation of micro RNA processing and the regulation of small ubiquitin-like modifier (SUMO) conjugation.