CIEM   05476
CENTRO DE INVESTIGACION Y ESTUDIOS DE MATEMATICA
Unidad Ejecutora - UE
artículos
Título:
On diagonal equations over finite fields via walks in NEPS of graphs
Autor/es:
DENIS E. VIDELA
Revista:
FINITE FIELDS AND THEIR APPLICATIONS
Editorial:
ACADEMIC PRESS INC ELSEVIER SCIENCE
Referencias:
Lugar: Amsterdam; Año: 2021 vol. 75
ISSN:
1071-5797
Resumen:
n this paper, we obtain an explicit combinatorial formula for the number of solutions (x1,?,xr)∈F_p^{ab} to the diagonal equation x_1^k+⋯+x_r^k=α over the finite field F_p^{ab}, with k=(p^{ab}−1)/(b(p^a−1)) and b>1 by using the number of r-walks in NEPS of complete graphs.