CIEM   05476
CENTRO DE INVESTIGACION Y ESTUDIOS DE MATEMATICA
Unidad Ejecutora - UE
artículos
Título:
Integral equienergetic unitary non-isospectral Cayley graphs
Autor/es:
DENIS E. VIDELA; RICARDO A. PODESTÁ
Revista:
LINEAR ALGEBRA AND ITS APPLICATIONS
Editorial:
ELSEVIER SCIENCE INC
Referencias:
Lugar: Amsterdam; Año: 2021 vol. 612 p. 42 - 74
ISSN:
0024-3795
Resumen:
We prove that the Cayley graphs X(G,S) and X+(G,S) are equienergetic for any abelian group G and any symmetric subset S. We then focus on the family of unitary Cayley graphs GR=X(R,R∗), where R is a finite commutative ring with identity. We show that under mild conditions, {GR,G+R} are pairs of integral equienergetic non-isospectral graphs (generically connected and non-bipartite). Then, we obtain conditions such that {GR,G¯R} are equienergetic non-isospectral graphs. Finally, we characterize all integral equienergetic non-isospectral triples {GR,G+R,G¯R} such that all the graphs are also Ramanujan

