CIEM   05476
CENTRO DE INVESTIGACION Y ESTUDIOS DE MATEMATICA
Unidad Ejecutora - UE
artículos
Título:
Block transitive codes attaining the Tsfasman, Vladut and Zink's bound
Autor/es:
R. PODESTÁ; R. PODESTÁ; R. TOLEDANO; R. TOLEDANO; M. CHARA; M. CHARA
Revista:
DESIGNS CODES AND CRYPTOGRAPHY
Editorial:
SPRINGER
Referencias:
Año: 2020 vol. 88 p. 1227 - 1253
ISSN:
0925-1022
Resumen:
We study the asymptotic behaviour of a class of algebraic geometry codes, which we call block-transitive, that generalizes the classes of transitive and quasi-transitive codes. We prove by using towers of algebraic function fields with either wild or tame ramification, that there are sequences of codes in this family attaining the Tsfasman-Vladut-Zink bound over finite fields of square cardinality. We give the exact length of each code in these sequences as well as explicit lower bounds for their parameters.

