CIEM   05476
CENTRO DE INVESTIGACION Y ESTUDIOS DE MATEMATICA
Unidad Ejecutora - UE
artículos
Título:
Faithful representations of minimal dimension of current Heisenberg Lie algebras
Autor/es:
LEANDRO CAGLIERO AND NADINA ROJAS
Revista:
INTERNATIONAL JOURNAL OF MATHEMATICS
Editorial:
WORLD SCIENTIFIC PUBL CO PTE LTD
Referencias:
Lugar: -; Año: 2009 vol. 20 p. 1347 - 1362
ISSN:
0129-167X
Resumen:
egin{abstract}Given a Lie algebra $g$ over a field of characteristic zero $k$,let $mu(g)=min{dim pi: pi ext{ is a faithful representation of }g}$.Let $h_{m}$ bethe Heisenberg Lie algebra of dimension $2m+1$ over $k$ and let$k[t]$ be the polynomial algebra in one variable. Given$minmathbb{N}$ and $pink[t]$, let $h_{m,p}=h_motimesk[t]/(p)$ be the current Lie algebra associated to $h_m$ and$k[t]/(p)$, where $(p)$ is the principal ideal in $k[t]$ generated by $p$.In this paper we prove that $ mu(h_{m,p}) = m deg p + leftlceil 2sqrt{deg p} ight ceil. $end{abstract}