CIEM   05476
CENTRO DE INVESTIGACION Y ESTUDIOS DE MATEMATICA
Unidad Ejecutora - UE
artículos
Título:
Free 2-step nilpotent Lie algebras and indecomposable representations
Autor/es:
FREZ, LUIS GUTIÉRREZ; SZECHTMAN, FERNANDO; CAGLIERO, LEANDRO
Revista:
COMMUNICATIONS IN ALGEBRA
Editorial:
TAYLOR & FRANCIS INC
Referencias:
Año: 2018 vol. 46 p. 2990 - 3005
ISSN:
0092-7872
Resumen:
Given an algebraically closed field F of characteristic 0 and an F-vector space V, let L(V) = V⊕Λ2(V) denote the free 2-step nilpotent Lie algebra associated to V. In this paper, we classify all uniserial representations of the solvable Lie algebra &= ⟨x⟩⋉L(V), where x acts on V via an arbitrary invertible Jordan block.

