CIEM   05476
CENTRO DE INVESTIGACION Y ESTUDIOS DE MATEMATICA
Unidad Ejecutora - UE
artículos
Título:
Congruences between modular forms modulo prime powers
Autor/es:
MAXIMILIANO CAMPORINO; ARIEL PACETTI
Revista:
REVISTA MATEMATICA IBEROAMERICANA
Editorial:
UNIV AUTONOMA MADRID
Referencias:
Lugar: Madrid; Año: 2018
ISSN:
0213-2230
Resumen:
Given a prime $p \ge 5$ and an abstract odd representation $\rho_n$   with coefficients modulo $p^n$ (for some $n \ge 1$) and big image, we prove the existence of a lift of $\rho_n$ to characteristic $0$ whenever local lifts exist (under minor technical conditions). Moreover, our results allow to chose the lift's inertial type at all primes but finitely many (where the lift is of Steinberg type). We apply this result to the realm of modular forms, proving a level lowering theorem modulo prime powers and providing examples of level  raising.  An easy application of our main result proves that given a modular eigenform $f$ without Complex Multiplication nor inner twists, for all primes $p$ but finitely many, and for all positive integers $n$, there exists an eigenform $g\neq f$, which is congruent to $f$ modulo $p^n$.