CIEM   05476
CENTRO DE INVESTIGACION Y ESTUDIOS DE MATEMATICA
Unidad Ejecutora - UE
artículos
Título:
On Heegner points for primes of additive reduction ramifying in the base field
Autor/es:
PACETTI, ARIEL; KOHEN, DANIEL
Revista:
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
Editorial:
AMER MATHEMATICAL SOC
Referencias:
Lugar: Providence; Año: 2018 vol. 370 p. 911 - 926
ISSN:
0002-9947
Resumen:
Let E be a rational elliptic curve, and K be an imaginary quadratic field. In this article we give a method to construct Heegner points when E has a prime bigger than 3 of additive reduction ramifying in the field K. The ideas apply to more general contexts, like constructing Darmon points a ttached to real quadratic fields which is presented in the appendix.