CIEM   05476
CENTRO DE INVESTIGACION Y ESTUDIOS DE MATEMATICA
Unidad Ejecutora - UE
artículos
Título:
New lattice point asymptotics on products of upper half-planes
Autor/es:
BRUGGEMAN, R. W., GRUNEWALD F., MIATELLO R.J.,
Revista:
INTERNATIONAL MATHEMATICS RESEARCH NOTICES
Editorial:
OXFORD UNIV PRESS
Referencias:
Lugar: Oxford; Año: 2011 vol. 2011 p. 1510 - 1519
ISSN:
1073-7928
Resumen:
Abstract. Given  an irreducible lattice in PSL2(R)^d , (d ge  2) and z a point in the d-fold direct product of the upper half plane, we study the discrete set of componentwise distances D(gamma; z) in  Rd defined in (1). We prove asymptotic results on the number of 2  such that d(z; z) is contained in strips expanding in some directions and also in expanding hypercubes. The results on the counting in expanding strips are new. The results on expanding hypercubes improve the existing error terms  by Gorodnik-Nevo [6],  and generalize the Selberg error term for d = 1.bstract. Given  an irreducible lattice in PSL2(R)^d , (d ge  2) and z a point in the d-fold direct product of the upper half plane, we study the discrete set of componentwise distances D(gamma; z) in  Rd defined in (1). We prove asymptotic results on the number of 2  such that d(z; z) is contained in strips expanding in some directions and also in expanding hypercubes. The results on the counting in expanding strips are new. The results on expanding hypercubes improve the existing error terms  by Gorodnik-Nevo [6],  and generalize the Selberg error term for d = 1.