CIEM   05476
CENTRO DE INVESTIGACION Y ESTUDIOS DE MATEMATICA
Unidad Ejecutora - UE
artículos
Título:
Matrix Spherical Analysis on Nilmanifolds
Autor/es:
DÍAZ MARTÍN, ROCÍO; SAAL, LINDA
Revista:
arXiv.org
Editorial:
arXiv.org
Referencias:
Año: 2017
ISSN:
2331-8422
Resumen:
Given a nilpotent Lie group N, a compact subgroup K of automorphisms of N and an irreducible unitary representation (τ,Wτ) of K, we study conditions on τ for the commutativity of the algebra of End(Wτ)-valued integrable functions on N, with an additional property that generalizes the notion of K-invariance. A necessary condition, proved by F. Ricci and A. Samanta, is that (K⋉N,K) must be a Gelfand pair. In this article we determine all the commutative algebras from a particular class of Gelfand pairs constructed by J. Lauret.