CIEM   05476
CENTRO DE INVESTIGACION Y ESTUDIOS DE MATEMATICA
Unidad Ejecutora - UE
artículos
Título:
Branching Rules for Finite-Dimensional Uq(Su(3))-Representations with Respect to a Right Coideal Subalgebra
Autor/es:
ALDENHOVEN, NOUD; KOELINK, ERIK; ROMÁN, PABLO
Revista:
Algebras and Representation Theory
Editorial:
SPRINGER
Referencias:
Año: 2017 vol. 20 p. 821 - 842
ISSN:
1386-923X
Resumen:
We consider the quantum symmetric pair (Uq(Su(3)) , B) where B is a right coideal subalgebra. We prove that all finite-dimensional irreducible representations of B are weight representations and are characterised by their highest weight and dimension. We show that the restriction of a finite-dimensional irreducible representation of Uq(Su(3)) to B decomposes multiplicity free into irreducible representations of B. Furthermore we give explicit expressions for the highest weight vectors in this decomposition in terms of dual q-Krawtchouk polynomials.