CIEM   05476
CENTRO DE INVESTIGACION Y ESTUDIOS DE MATEMATICA
Unidad Ejecutora - UE
artículos
Título:
Matrix-Valued Gegenbauer-Type Polynomials
Autor/es:
ROMÁN, PABLO; KOELINK, ERIK; DE LOS RÍOS, ANA M.
Revista:
CONSTRUCTIVE APPROXIMATION
Editorial:
SPRINGER
Referencias:
Año: 2017 vol. 46 p. 459 - 487
ISSN:
0176-4276
Resumen:
We introduce matrix-valued weight functions of arbitrary size, which are analogues of the weight function for the Gegenbauer or ultraspherical polynomials for the parameter ν> 0. The LDU-decomposition of the weight is explicitly given in terms of Gegenbauer polynomials. We establish a matrix-valued Pearson equation for these matrix weights leading to explicit shift operators relating the weights for parameters ν and ν+ 1. The matrix coefficients of the Pearson equation are obtained using a special matrix-valued differential operator in a commutative algebra of symmetric differential operators. The corresponding orthogonal polynomials are the matrix-valued Gegenbauer-type polynomials which are eigenfunctions of the symmetric matrix-valued differential operators. Using the shift operators, we find the squared norm, and we establish a simple Rodrigues formula. The three-term recurrence relation is obtained explicitly using the shift operators as well. We give an explicit nontrivial expression for the matrix entries of the matrix-valued Gegenbauer-type polynomials in terms of scalar-valued Gegenbauer and Racah polynomials using the LDU-decomposition and differential operators. The case ν= 1 reduces to the case of matrix-valued Chebyshev polynomials previously obtained using group theoretic considerations.

