CIEM   05476
CENTRO DE INVESTIGACION Y ESTUDIOS DE MATEMATICA
Unidad Ejecutora - UE
artículos
Título:
A finite-dimensional Lie algebra arising from a Nichols algebra of diagonal type (rank 2)
Autor/es:
ANDRUSKIEWITSCH, NICOLÁS; ANDRUSKIEWITSCH, NICOLÁS; ANGIONO, IVÁN EZEQUIEL; ANGIONO, IVÁN EZEQUIEL; ROSSI BERTONE, FIORELA; ROSSI BERTONE, FIORELA
Revista:
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN
Editorial:
BELGIAN MATHEMATICAL SOC TRIOMPHE
Referencias:
Año: 2017 vol. 24 p. 15 - 34
ISSN:
1370-1444
Resumen:
Let Bq be a finite-dimensional Nichols algebra of diagonal type corresponding to a matrix q in k^{mxm}$.Let Lq be the Lusztig algebra associated to Bq. We present Lq as an extension (as braided Hopf algebras) of Bq by Zq where Zq is isomorphic to the universal enveloping algebra of a Lie algebra Nq. We compute the Lie algebra Nq when m=2.