CIEM   05476
CENTRO DE INVESTIGACION Y ESTUDIOS DE MATEMATICA
Unidad Ejecutora - UE
artículos
Título:
HECKE AND STURM BOUNDS FOR HILBERT MODULAR FORMS OVER REAL QUADRATIC FIELDS
Autor/es:
PACETTI, ARIEL; BURGOS GIL, JOSÉ IGNACIO
Revista:
MATHEMATICS OF COMPUTATION
Editorial:
AMER MATHEMATICAL SOC
Referencias:
Lugar: Providence; Año: 2017 vol. 86 p. 1949 - 1978
ISSN:
0025-5718
Resumen:
Let K be a real quadratic field and OK its ring of integers. Let Γ be a congruence subgroup of SL2 (OK ) and M(k1 ,k2 ) (Γ) be the finite dimen-sional space of Hilbert modular forms of weight (k1, k2 ) for Γ. Given a form f (z) ∈ M(k1 ,k2 )(Γ), how many Fourier coefficients determine it uniquely in such space? This problem was solved by Hecke for classical forms, and Sturm proved its analogue for congruences modulo a prime ideal. The present article solves the same problem for Hilbert modular forms over K. We construct a finite set of indices (which depends on the cusps desingularization of the modular surface attached to Γ) such that the Fourier coefficients of any form in such set determines it uniquely.